PyTorch是一個流行的深度學習框架,一般情況下使用單個GPU進行計算時是十分方便的。但是當涉及到處理大規模數據和並行處理時,需要利用多個GPU。這時PyTorch就顯得不那麼方便,所以這篇文章我們將介紹如何利用torch.multiprocessing模塊,在PyTorch中實現高效的多進程處理。 多進程是一種允許多個進程併發運行的方法,利用多個CPU內核和GPU進行並行計算。這可以大大提高
本文將探討了缺失值插補的不同方法,並比較了它們在復原數據真實分佈方面的效果,處理插補是一個不確定性的問題,尤其是在樣本量較小或數據複雜性高時的挑戰,應選擇能夠適應數據分佈變化並準確插補缺失值的方法。 我們假設存在一個潛在的分佈P,從中得出觀察值X。此外,還繪製了一個與X相同維數的0/1向量,我們稱這個向量為M,實際觀測到的數據向量X被M掩碼為X。我們觀測到聯合向量(X,M)的n個獨立同分布(i.i
異常處理是寫好代碼的一個重要的方面,雖然許多開發人員都熟悉基本的try-except塊,但是有很多更深入的知識可以使異常處理更高效、更可讀和更python化。所以本文將介紹關於Python異常的20個可以顯著改善編碼的Python異常處理技巧,這些技巧可以讓你熟練的掌握Python的異常處理。 Python中的異常是在程序執行期間發生的破壞了程序指令的正常流程的事件。與其他編程語言一樣,Pytho
Pandas是我們最常用的數據處理Python庫之一。儘管您可能已經與它共事多年,但可能還有許多您尚未探索的實用方法。我將向您展示一些可能未曾聽説但在數據整理方面非常實用的方法。 我目前日常使用的是pandas 2.2.0,這是本文時可用的最新版本。 import pandas as pd import numpy as np print(pd.__version__) 1、agg 你
在本文中,我將分享4個在一行代碼中完成的Pandas操作。這些操作可以有效地解決特定的任務,並以一種好的方式給出結果。 從列表中創建字典 我有一份商品清單,我想看看它們的分佈情況。更具體地説:希望得到唯一值以及它們在列表中出現的次數。 Python字典是以這種格式存儲數據的好方法。鍵將是字典,值是出現的次數。 這裏可以使用value_counts和to_dict函數,這項任務可以在一行代碼中完成
Python pandas庫提供了幾種選擇和過濾數據的方法,如loc、iloc、[]括號操作符、query、isin、between等等 本文將介紹使用pandas進行數據選擇和過濾的基本技術和函數。無論是需要提取特定的行或列,還是需要應用條件過濾,pandas都可以滿足需求。 選擇列 loc[]:根據標籤選擇行和列。df.row_label loc, column_label] 也可以使用lo
Pandas是一種流行的用於數據操作的Python庫,它提供了一種稱為“向量化”的強大技術可以有效地將操作應用於整個列或數據系列,從而消除了顯式循環的需要。在本文中,我們將探討什麼是向量化,以及它如何簡化數據分析任務。 什麼是向量化? 向量化是將操作應用於整個數組或數據系列的過程,而不是逐個遍歷每個元素。在Pandas中可以對整個列或Series執行操作,而無需編寫顯式循環。這種高效的方法利用了
Pandas 支持多種存儲格式,在本文中將對不同類型存儲格式下的Pandas Dataframe的讀取速度、寫入速度和大小的進行測試對比。 創建測試Dataframe 首先創建一個包含不同類型數據的測試Pandas Dataframe。 import pandas as pd import random import string import numpy as np # Conf
Pandas提供了強大的數據操作和分析功能,是數據科學的日常基本工具。在本文中,我們將介紹最常用的15個Pandas代碼片段。這些片段將幫助簡化數據分析任務,從數據集中提取有價值的見解。 1、過濾數據 Pandas提供了多種方法來過濾數據。 import pandas as pd # Create a DataFrame data = {'Name': ['Alice', 'Bob',
2023年3月1日,Pandas 發佈了2.0版本。6個月後(8月30日),更新了新的2.1版。讓我們看看他有什麼重要的更新。 更好的PyArrow支持 PyArrow是在Panda 2.0中新加入的後端,對於大數據來説提供了優於NumPy的性能。Pandas 2.1增強了對PyArrow的支持。官方在這次更新中使用最大的高亮字體宣佈 PyArrow 將是 Pandas 3.0的基礎依賴,這説明P
由於LLM的發展, 很多的數據集都是以DF的形式發佈的,所以通過Pandas操作字符串的要求變得越來越高了,所以本文將對字符串操作方法進行基準測試,看看它們是如何影響pandas的性能的。因為一旦Pandas在處理數據時超過一定限制,它們的行為就會很奇怪。 我們用Faker創建了一個100,000行的測試數據。 測試方法 安裝: !pip install faker 生成測試數據的方法很簡答:
數據清理是數據分析過程中的關鍵步驟,它涉及識別缺失值、重複行、異常值和不正確的數據類型。獲得乾淨可靠的數據對於準確的分析和建模非常重要。 本文將介紹以下6個經常使用的數據清理操作: 檢查缺失值、檢查重複行、處理離羣值、檢查所有列的數據類型、刪除不必要的列、數據不一致處理 第一步,讓我們導入庫和數據集。 # Import libraries import pandas as pd # Re
Pandas是我們日常處理表格數據最常用的包,但是對於數據分析來説,Pandas的DataFrame還不夠直觀,所以今天我們將介紹4個Python包,可以將Pandas的DataFrame轉換交互式表格,讓我們可以直接在上面進行數據分析的操作。 Pivottablejs Pivottablejs是一個通過IPython widgets集成到Python中的JavaScript庫,允許用户直接從Da