博客 / 詳情

返回

Pandas DataFrame 數據存儲格式比較

Pandas 支持多種存儲格式,在本文中將對不同類型存儲格式下的Pandas Dataframe的讀取速度、寫入速度和大小的進行測試對比。

創建測試Dataframe

首先創建一個包含不同類型數據的測試Pandas Dataframe。

 import pandas as pd
 import random
 import string
 import numpy as np
 
 # Config DF
 df_length= 10**6
 start_date= '2023-01-01'
 all_string= list(string.ascii_letters + string.digits)
 string_length= 10**1
 min_number= 0
 max_number= 10**3
 
 # Create Columns
 date_col= pd.date_range(start= start_date, periods= df_length, freq= 'H')
 str_col= [''.join(np.random.choice(all_string, string_length)) for i in range(df_length)]
 float_col= np.random.rand(df_length)
 int_col= np.random.randint(min_number,max_number, size = df_length)
 
 # Create DataFrame
 df= pd.DataFrame({'date_col' : date_col, 
                   'str_col' : str_col, 
                   'float_col' : float_col, 
                   'int_col' : int_col})
 df.info()
 df.head()

以不同的格式存儲

接下來創建測試函數,以不同的格式進行讀寫。

 import time 
 import os
 
 def check_read_write_size(df, file_name, compression= None) :
     format= file_name.split('.')[-1]
     # Write
     begin= time.time()
     if file_name.endswith('.csv') : df.to_csv(file_name, index= False, compression= compression)
     elif file_name.endswith('.parquet') : df.to_parquet(file_name, compression= compression)
     elif file_name.endswith('.pickle') : df.to_pickle(file_name, compression= compression)
     elif file_name.endswith('.orc') : df.to_orc(file_name)
     elif file_name.endswith('.feather') : df.to_feather(file_name)
     elif file_name.endswith('.h5') : df.to_hdf(file_name, key= 'df')
     write_time= time.time() - begin
     # Read
     begin= time.time()
     if file_name.endswith('.csv') : pd.read_csv(file_name, compression= compression)
     elif file_name.endswith('.parquet') : pd.read_parquet(file_name)
     elif file_name.endswith('.pickle') : pd.read_pickle(file_name, compression= compression)
     elif file_name.endswith('.orc') : pd.read_orc(file_name)
     elif file_name.endswith('.h5') : pd.read_hdf(file_name)
     read_time= time.time() - begin
     # File Size
     file_size_mb = os.path.getsize(file_name) / (1024 * 1024)
     return [format, compression, read_time, write_time, file_size_mb]

然後運行該函數並將結果存儲在另一個Pandas Dataframe中。

 test_case= [
             ['df.csv','infer'],
             ['df.csv','gzip'],
             ['df.pickle','infer'],
             ['df.pickle','gzip'],
             ['df.parquet','snappy'],
             ['df.parquet','gzip'],
             ['df.orc','default'],
             ['df.feather','default'],
             ['df.h5','default'],
             ]
 
 result= []
 for i in test_case :
     result.append(check_read_write_size(df, i[0], compression= i[1]))
 
 result_df= pd.DataFrame(result, columns= ['format','compression','read_time','write_time','file_size'])
 result_df

測試結果

下面的圖表和表格是測試的結果。

我們對測試的結果做一個簡單的分析

CSV

  • 未壓縮文件的大小最大
  • 壓縮後的尺寸很小,但不是最小的
  • CSV的讀取速度和寫入速度是最慢的

Pickle

  • 表現得很平均
  • 但壓縮寫入速度是最慢的

Feather

最快的讀寫速度,文件的大小也是中等,非常的平均

ORC

  • 所有格式中最小的
  • 讀寫速度非常快,幾乎是最快的

Parquet

總的來説,快速並且非常小,但是並不是最快也不是最小的

總結

從結果來看,我們應該使用ORC或Feather,而不再使用CSV ?是嗎?

“這取決於你的系統。”

如果你正在做一些單獨的項目,那麼使用最快或最小的格式肯定是有意義的。

但大多數時候,我們必須與他人合作。所以,除了速度和大小,還有更多的因素。

未壓縮的CSV可能很慢,而且最大,但是當需要將數據發送到另一個系統時,它非常容易。

ORC作為傳統的大數據處理格式(來自Hive)對於速度的和大小的優化是做的最好的,Parquet比ORC更大、更慢,但是它卻是在速度和大小中取得了最佳的平衡,並且支持他的生態也多,所以在需要處理大文件的時候可以優先選擇Parquet。

https://avoid.overfit.cn/post/387acc48c7dd42a49f7bec90cc6d09ae

作者:Chanon Krittapholchai

user avatar fkcaikengren 頭像
1 位用戶收藏了這個故事!

發佈 評論

Some HTML is okay.