tag pytorch

標籤
貢獻26
115
01:36 PM · Nov 05 ,2025

@pytorch / 博客 RSS 訂閱

flyingsmiling - pytorch卡爾曼濾波

卡爾曼濾波是什麼 卡爾曼濾波適用於估計一個動態系統的最優狀態。即便是觀測到的系統狀態參數含有噪聲,觀測值不準確,卡爾曼濾波也能夠完成對狀態真實值的最優估計。網上大多數的教程講到卡爾曼的數學公式推導,會讓人很頭疼,難以把握其中的主線和思想。所以我參考了國外一位學者的文章,講述卡爾曼濾波的工作原理,然後編寫了一個基於OpenCV的小程序給大家做一下説明

pytorch卡爾曼濾波 , 協方差矩陣 , 初始化 , pytorch , 人工智能 , 卡爾曼濾波

收藏 評論

deephub - TorchOptimizer:基於貝葉斯優化的PyTorch Lightning超參數調優框架

超參數優化是深度學習模型開發過程中的一個核心技術難點。合適的超參數組合能夠顯著提升模型性能,但優化過程往往需要消耗大量計算資源和時間。本文介紹TorchOptimizer,這是一個基於貝葉斯優化方法的超參數優化框架,專門用於優化PyTorch Lightning模型的超參數配置。 TorchOptimizer是一個集成了PyTorch Lightning框架和scikit-optimize貝葉斯

機器學習 , pytorch , 人工智能 , 深度學習 , 優化

收藏 評論

jordana - PyTorch中文教程 | (15) 在深度學習和NLP中使用PyTorch_pytorch 中文nlp

PyTorch 的 torch.nn 模塊是構建和訓練神經網絡的核心模塊,它提供了豐富的類和函數來定義和操作神經網絡。 以下是 torch.nn 模塊的一些關鍵組成部分及其功能: nn.Module 類 nn.Module 是所有自定義神經網絡模型的基類。用户通常會從這個類派生自己的模型類,並在其中定義網絡層結

卷積 , 神經網絡 , pytorch , 後端開發 , 人工智能 , 深度學習 , Python

收藏 評論

deephub - 如果你的PyTorch優化器效果欠佳,試試這4種深度學習中的高級優化技術吧

在深度學習領域,優化器的選擇對模型性能至關重要。雖然PyTorch中的標準優化器如 SGD 、 Adam 和 AdamW 被廣泛應用,但它們並非在所有情況下都是最優選擇。本文將介紹四種高級優化技術,這些技術在某些任務中可能優於傳統方法,特別是在面對複雜優化問題時。 我們將探討以下算法: 序列最小二乘規劃(SLSQP) 粒子羣優化(PSO) 協方差矩陣自適應進化策略(CMA-ES) 模擬退

神經網絡 , pytorch , 人工智能 , 深度學習 , 優化

收藏 評論

未聞花名AI - 構建AI智能體:五十二、反應式智能體:AI世界的條件反射,真的可以又快又穩

一、初識反應式智能體 前一篇我們詳細瞭解了深思熟慮智能體,今天我們討論智能體的另一種類型,反應式智能體,想象一下,當我們的手不小心觸碰到一個滾燙的杯子時,我們會瞬間縮回。這個過程中,我們的大腦甚至還沒有意識到燙這個概念,手已經完成了動作。這種不經過深思熟慮、直接由刺激引發的快速反應,就是反應式智能體的核心思想。 反應式智能體是一種基於“感知-行動”模式的智能系統。它不

最高優先級 , yyds乾貨盤點 , 優先級 , 智能體 , pytorch , 人工智能 , 高優先級

收藏 評論

deephub - 使用PyTorch實現GPT-2直接偏好優化訓練:DPO方法改進及其與監督微調的效果對比

基於人類反饋的強化學習(RLHF)已成為大型語言模型(LLM)訓練流程中的關鍵環節,並持續獲得研究界的廣泛關注。 本文將探討RLHF技術,特別聚焦於直接偏好優化(Direct Preference Optimization, DPO)方法,並詳細闡述了一項實驗研究:通過DPO對GPT-2 124M模型進行調優,同時與傳統監督微調(Supervised Fine-tuning, SFT)方法進行對比

機器學習 , llm , pytorch , 人工智能 , 優化

收藏 評論

u_15214399 - 基於華為開發者空間,實現RFM分析與CLTV預測的電商客户細分與營銷策略優化

本案例由開發者:天津師範大學協同育人項目–翟羽佳提供 最新案例動態,請查閲 《【案例共創】基於華為開發者空間,實現RFM分析與CLTV預測的電商客户細分與營銷策略優化》。小夥伴快來領取華為開發者空間進行實操吧! 一、概述 1. 案例介紹 隨着電子商務行業的競爭加劇,企業需要更加精細化的客户管理策略來提升客户忠誠度和營銷效率。根據最新的市場調研,電商行業平均

數據 , pytorch , Customer , 人工智能 , 開發者

收藏 評論

mob64ca13fb6939 - 目標檢測(五)之YOLOv1

【算法介紹】 在航空運輸安全保障要求持續升級、對機場運行精細化管控需求愈發迫切的背景下,傳統機場跑道異物檢測方式已難以應對複雜多變的跑道環境。基於YOLOv11的機場跑道異物檢測系統應運而生,為航空領域帶來了高效、精準的異物排查解決方案。 該系統具備強大的多類型異物識別能力,可精準識別金屬碎片(metal debris)、小石子(small

數據集 , yolo , pytorch , 後端開發 , 人工智能 , txt文件 , harmonyos

收藏 評論

未聞花名AI - 構建AI智能體:四十八、從單體智能到羣體智能:A2A協議如何重塑人機協作新範式

一、開篇導語 我們對A2A已經有了初步的瞭解,但對具體使用可能還充滿了很多疑問,今天我們結合具體的實例來加深對A2A實際應用的理解,想象這樣一個場景:我們要組織一場户外籃球賽,需要同時考慮天氣狀況、場地預約、參與人員時間安排等多個因素。在傳統模式下,這需要我們分別查看天氣預報、聯繫場地管理員、逐個確認參與者時間——一個典型的多系統、多步驟的繁瑣過程

天氣查詢 , yyds乾貨盤點 , API , pytorch , 人工智能 , A2A , Json

收藏 評論

未聞花名AI - 構建AI智能體:四十一、大模型思維鏈提示工程:技術原理與行業應用案例分析

一、前言 隨着模型在自然語言理解、文本生成等基礎任務上的性能持續突破,其在複雜問題解決場景中的推理能力不足逐漸成為技術落地的關鍵瓶頸。儘管主流模型在單一任務中展現出接近甚至超越人類的表現,但在需要多步驟邏輯推演、數學運算或因果關係分析的複雜任務中,往往因缺乏明確的推理路徑而產生錯誤結論或表面化回答。這種推理能力的侷限性,本質上反映了大模型在處理非線性、多約束問題時對中間推理

思維鏈提示 , 推理過程 , API , pytorch , 人工智能 , Json

收藏 評論

deephub - Neural ODE原理與PyTorch實現:深度學習模型的自適應深度調節

對於神經網絡來説,我們已經習慣了層狀網絡的思維:數據進來,經過第一層,然後第二層,第三層,最後輸出結果。這個過程很像流水線,每一步都是離散的。 但是現實世界的變化是連續的,比如燒開水,誰的温度不是從30度直接跳到40度,而是平滑的上生。球從山坡滾下來速度也是漸漸加快的。這些現象背後都有連續的規律在支配。 微分方程就是描述這種連續變化的語言。它不關心某個時刻的具體數值,而是告訴你"變化的速度"。比如

神經網絡 , pytorch , 人工智能 , 深度學習

收藏 評論

deephub - TensorRT 和 ONNX Runtime 推理優化實戰:10 個降低延遲的工程技巧

模型速度的瓶頸往往不在算法本身。幾毫秒的優化累積起來就能讓用户感受到明顯的性能提升。下面這些技術都是在生產環境跑出來的經驗,不需要重構代碼實施起來也相對簡單並且效果顯著。 固定輸入形狀,越早告訴運行時越好 動態形狀用起來方便但對性能不友好。TensorRT 和 ONNX Runtime 在處理固定形狀時能做更激進的優化。 TensorRT 這邊,構建引擎時最好圍繞實際使用的 min/opt

pytorch , 人工智能 , tensorrt

收藏 評論

未聞花名AI - 構建AI智能體:五十一、深思熟慮智能體:從BDI架構到認知推理的完整流程體系

一、什麼是深思熟慮的智能體 當我們談論一個決策是深思熟的,我們指的是這個決策經歷了深度的思考過程,不僅僅是快速的反應,而是包含了分析、推理、權衡和規劃的複雜認知活動。同樣,在人工智能領域,深思熟慮的智能體(Deliberative Agent) 是指能夠進行復雜推理、規劃未來行動、並基於內部狀態和外部環境做出決策的智能系統。與簡單的反應式智能體不同,深思熟慮的智能體具備:

AIGC二三事 , List , 優先級 , 數據 , pytorch , 人工智能

收藏 評論

DeepSeaAI - 智能體開發框架選型決策樹V2

四大框架的技術架構和典型應用案例,通過結構化拆解讓選型邏輯更貼合實際開發場景,同時優化決策樹的實用性和參考價值。 智能體開發框架選型決策樹 各框架核心信息補充説明 LlamaIndex 架構亮點:核心優勢在索引優化,提供Llama Parse組件支持複雜文檔解析,Workflows引擎可編排多步驟異步流程,索引層支持增量更新和量化壓縮,兼顧精

應用層 , 技術架構 , pytorch , 人工智能 , 結構化

收藏 評論

u_15214399 - 基於華為開發者空間Notebook,Tensorflow + Fashion MNIST構建CNN實現智能衣櫃服裝分類系統

一、概述 1. 案例介紹 華為開發者空間,是為全球開發者打造的專屬開發者空間,致力於為每位開發者提供一台雲主機、一套開發工具和雲上存儲空間,匯聚昇騰、鴻蒙、鯤鵬、GaussDB、歐拉等華為各項根技術的開發工具資源,並提供配套案例指導開發者從開發編碼到應用調測,基於華為根技術生態高效便捷的知識學習、技術體驗、應用創新。 開發者空間 - AI

pytorch , 人工智能 , 開發者 , 項目源碼 , Glyph

收藏 評論

技術領航舵手 - pytorch 張量如何深拷貝 pytorch batchsize

零、Tricks集宜 0.1 知識搬運 (1)PyTorch提速 預處理提速 IO提速 訓練策略 代碼層面 模型設計 推理加速 時間分析 項目推薦 擴展閲讀 (2)PyTorch節省顯存 儘

機器學習 , pytorch 張量如何深拷貝 , pytorch , 人工智能 , 深度學習 , 2d

收藏 評論

deephub - PyTorch中的多進程並行處理

PyTorch是一個流行的深度學習框架,一般情況下使用單個GPU進行計算時是十分方便的。但是當涉及到處理大規模數據和並行處理時,需要利用多個GPU。這時PyTorch就顯得不那麼方便,所以這篇文章我們將介紹如何利用torch.multiprocessing模塊,在PyTorch中實現高效的多進程處理。 多進程是一種允許多個進程併發運行的方法,利用多個CPU內核和GPU進行並行計算。這可以大大提高

pytorch , 人工智能 , 深度學習 , 多進程

收藏 評論

deephub - PINN訓練新思路:把初始條件和邊界約束嵌入網絡架構,解決多目標優化難題

PINNs出了名的難訓練。主要原因之一就是這個多目標優化問題。優化器很容易找到投機取巧的路徑——比如拼命降低微分方程殘差,但完全不管初始條件和邊界約束。只要給初始條件和邊界損失配的權重夠低,它們增加的那點損失完全能被殘差損失的大幅下降抵消掉。調整權重也許能暫時緩解這個問題,但誰也不能保證最優權重在整個訓練過程中一直有效。 標準的PINN用複合損失函數,把三項加權求和: 初始條件損失 邊界損失

神經網絡 , pytorch , 人工智能 , 深度學習

收藏 評論

deephub - 融合AMD與NVIDIA GPU集羣的MLOps:異構計算環境中的分佈式訓練架構實踐

在深度學習的背景下,NVIDIA的CUDA與AMD的ROCm框架缺乏有效的互操作性,導致基礎設施資源利用率顯著降低。隨着模型規模不斷擴大而預算約束日益嚴格,2-3年更換一次GPU的傳統方式已不具可持續性。但是Pytorch的最近幾次的更新可以有效利用異構計算集羣,實現對所有可用GPU資源的充分調度,不受制於供應商限制。 本文將深入探討如何混合AMD/NVIDIA GPU集羣以支持PyTor

神經網絡 , pytorch , 人工智能 , 分佈式系統 , 深度學習

收藏 評論

數據科學探索者 - 計算機視覺 - Attention機制(附代碼)_51CTO博客

Softmax函數 Softmax函數用於將值變成一個概率分佈(和為1)。 softmax 的核心作用可以概括為三個方面: 1. 把一組實數轉換成概率分佈 softmax 會把任意向量轉成非負且總和為 1 的結果,常用來表示概率。 這樣模型輸出可以被解釋為不同類別的概率。 2. 放大差異

pytorch , 權重 , 人工智能 , 深度學習 , jquery , 前端開發 , 概率分佈

收藏 評論

未聞花名AI - 構建AI智能體:五十七、LangGraph + Gradio:構建可視化AI工作流的趣味指南

一、讓AI觸手可及 相信我們身邊或多或少總是聽到很多人在説大模型大模型,可大模型具體怎麼用還是一道很深的門檻,我們博文也寫了很多,但具體的用法和作用,使我們還面臨着一個有趣的矛盾:大模型的能力越來越強,但真正能讓普通用户直接使用的AI應用卻少之又少。今天,我想分享我們如何用LangGraph和Gradio構建一個可視化、可配置的AI工作流系統,讓非技術用户也能輕鬆組合各種A

AIGC二三事 , 智能工作流 , 流程編排 , pytorch , langgraph , 人工智能

收藏 評論

deephub - Scikit-Learn 1.8引入 Array API,支持 PyTorch 與 CuPy 張量的原生 GPU 加速

Scikit-Learn 1.8.0 更新引入了實驗性的 Array API 支持。這意味着 CuPy 數組或 PyTorch 張量現在可以直接在 Scikit-Learn 的部分組件中直接使用了,且計算過程能保留在 GPU 上。 1.8.0 到底更新了什麼? Scikit-Learn 開始正式支持Python Array API 標準。這是一個由 NumPy、CuPy、PyTorch、J

神經網絡 , pytorch , 人工智能 , 深度學習 , sklearn-pandas

收藏 評論

學技術贏未來 - 鴻蒙健康手錶開發

隨着萬物互聯時代的深化,智能手錶已從單純的計時工具升級為全場景交互入口,尤其在健康監測、運動管理、分佈式協同等場景中發揮核心作用。鴻蒙系統(HarmonyOS)憑藉“一次開發、多端部署”的分佈式架構優勢,以及輕量化內核、低功耗優化等特性,成為智能手錶開發的優選生態。本文將從開發基礎、核心能力實現、實戰案例到性能優化,完整拆解鴻蒙手錶開發的技術路徑,助力開發者快速上手並落地高質量應用。 一

數據 , API , pytorch , 人工智能 , ui

收藏 評論

mob64ca13f937ae - python PyTorch參數初始化和Finetune_python

1. def __init__(self, k=3): 這個 __init__ 是所有的 class 都可以用嗎? 是的,__init__ 是 Python 中一個特殊的方法,被稱為構造函數(Constructor)。 用途: 它是創建類的新實例(對象)時自動調用的方法。它的主要作用是初始化新創建對象的屬性。 並非強制: 所

虛擬化 , 數據 , 雲計算 , pytorch , 筆記 , Python

收藏 評論