收藏 / 列表

Candy - AI Agent 與 Agentic AI 系統:真正的區別是什麼?

大多數人把這兩個詞混用——但一個負責執行任務,另一個旨在達成目標。教你如何區分(以及各自的適用場景)。 先來澄清當下 AI 討論中最常見的一處混淆。 你可能經常看到大家把“AI agent”和“agentic AI system”當成同一件事。但事實是: 🚨 它們有關聯,但並不相同 就像把微波爐稱作“廚師”。它確實能加熱食物,但它不會幫你策劃一場晚宴。🍳 Friend Link 同理,AI

人工智能

SelectDB技術團隊 - Apache Doris 4.0 版本正式發佈:全面升級 AI 與搜索能力,強化離線計算

點擊關注,瞭解更多實時數倉領域前沿資訊與技術實踐! 親愛的社區小夥伴們,我們很高興地向大家宣佈,近期我們迎來了 Apache Doris 4.0 版本的正式發佈,歡迎大家下載使用體驗。 本次發佈圍繞 “AI 驅動、搜索增強、離線提效” 三大核心方向,新增向量索引、AI 函數等關鍵特性,完善搜索功能矩陣,優化離線計算穩定性與資源利用率,並通過多項底層改進提升查詢性能與數據質量,為用户構建更高效、更

人工智能 , apache

煩惱的沙發 - Redis到底什麼,該怎麼用

大家有沒有發現一個問題,新項目剛上線時跑得可快了,自己點點還挺得意。可時間一長,用户一多,網頁就開始轉圈,查個數據庫比綠皮火車還慢。 這時候,可別急着把鍋都甩給數據庫。這是因為架構裏少了一個提速的好幫手,那就是Redis。 Redis到底是什麼 官方文檔會跟你扯一堆“基於內存的非關係型數據庫”,字分開都認識,合在一起就看不懂了。 打個比方,把主數據庫(比如MySQL)當成一個巨大的倉庫。這時候你

觀點 , redis , nosql , 數據庫

傲視眾生的香蕉_bvX78Q - 亞馬遜Kiro強勢挑戰Cursor霸主地位,AI IDE大戰誰能笑到最後?

2025年,AI驅動的開發工具生態系統正在經歷前所未有的變革。在Cursor重新定義AI IDE概念之後,亞馬遜推出的Kiro以其獨特的"規劃優先"理念強勢入場,為開發者帶來了全新的編程體驗。這兩款工具雖然都致力於提升開發效率,但在架構設計、工作流程和生產力提升方式上卻展現出截然不同的哲學。 本文將從技術架構、功能特性、開發者體驗等維度深度對比這兩款AI IDE,探討它們如何重塑現代軟件開發流程。

開發工具 , 人工智能 , ide

慧星雲 - Gemini 2.0:集多模態、強性能、優交互於一身的 AI 新寵

谷歌 在科技飛速發展的當下,人工智能領域不斷涌現出令人矚目的創新成果,谷歌推出的新一代大模型Gemini2.0無疑是其中一顆璀璨的新星,正以其卓越的性能和強大的功能,為我們開啓了智能化交互的嶄新篇章。 Gemini2.0 Gemini2.0 使用Gemini2.0構建的最新版本中的改進包括: 更順暢的對話:ProjectAstra現在能夠使用多種語言和混合語言進行交談,從而更好地理

llm , 雲計算 , google , aigc , 人工智能

Fabarta - Cursor可控AI編程實踐:縮短交付週期,保障產品質量

導讀AI編程工具的興起讓開發效率有了質的飛躍,但很多開發者在使用過程中會發現一個問題:AI生成的代碼往往與現有項目的技術棧、編碼規範不匹配,需要大量的手動修改,開發效率拖了後腿。如何讓AI按照我們的意圖和規範來編寫代碼?這就是"可控AI編程"要解決的核心問題。 通過Cursor可控AI編程技術,我們大幅提升了開發效率,同時確保了產品的高質量和可靠性。本文將展示這一技術如何為企業創造實際價

編程 , 人工智能 , 深度學習

JavaEdge - Gemini 3 開啓智慧新時代

近兩年前,我們開啓了 Gemini 時代,這是公司史上規模最大的科學與產品計劃之一。自那時起,看到大家如此喜愛它,實在令人振奮。“AI 總覽”如今每月有 20 億活躍用户。Gemini 應用程序每月活躍用户超過 6.5 億,超過 70% 的雲客户正在使用我們的 AI,更有 1300 萬名開發者利用我們的生成式模型進行開發——而這僅僅是我們的影響力之一隅。 得益於我們在 AI

yyds乾貨盤點 , google , 應用程序 , 人工智能 , 深度學習 , 開發者

fangpin - 從0到1:揭秘LLM預訓練前的海量數據清洗全流程

讀完這篇文章,你將用監督微調(SFT)把一個 1.5B 規模的數學模型在 GSM8K 上的零樣本推理正確率從 1.56% → 62.9%,同時把輸出格式遵循率從 18.9% → 100%。我們將完整走通數據集下載、Prompt 架構、訓練配置和評估方法,所有代碼均來自本倉庫 alignment 文件夾,保證可復現與透明。 本文將深入剖析 llm-from-scratch

lua , 人工智能 , 深度學習 , Json , Python

求知上進 - Python 數據結構:可變與不可變

1.前言 在 Python 中,數據結構的選擇直接影響程序的性能和可維護性。可變(mutable)與不可變(immutable)數據結構是 Python 數據模型的核心概念。這些概念不僅影響數據的存儲方式,還影響數據的操作方式。 理解可變與不可變數據結構的特性,可以幫助我們更有效地進行數據處理、內存管理和性能優化。在日常編程中,選擇合適的數據結構不僅能提高代碼效率,還

不可變對象 , 數據 , 數據結構 , 人工智能 , 深度學習

HyperAI超神經 - 從9,874篇文獻到1.5萬晶體結構,MOF-ChemUnity重構MOF全景知識,推動材料發現進入「可解釋AI」時代

在材料科學領域,金屬有機框架(Metal–Organic Frameworks,MOFs)堪稱科學家們的「瑞士軍刀」:它們具有高比表面積、化學可調性和結構多樣性,在氣體分離與儲存、催化以及傳感等領域具有廣泛應用。然而,對於科研人員而言,MOF 的世界極其龐大且複雜——目前已有超過 12.5 萬種 MOF 框架被合成,並計算預測了數百萬種可能的結構。 雖然人工智能(AI)已經深刻改變了

人工智能 , 深度學習 , 材料科學

colddawn - DB where 字段 is null 會走索引嘛

1.對查詢進行優化,要儘量避免全表掃描,首先應考慮在 where 及 order by 涉及的列上建立索引。 2.應儘量避免在 where 子句中對字段進行 null 值判斷,否則將導致引擎放棄使用索引而進行全表掃描,如: select id from t where num is null 最好不要給數據庫留NULL,儘可能的使用NO

字段 , 大數據 , 存儲過程 , 數據倉庫 , bc

IvorySQL - AI時代雲原生數據庫一體機的思考

本文整理自 IvorySQL 2025 生態大會暨 PostgreSQL 高峯論壇的演講分享,演講嘉賓:唐成,中啓乘數科技 CTO,資深 PostgreSQL 專家。 引言 AI 技術正從訓練轉向推理與應用,數據基礎設施面臨新的挑戰。傳統數據庫難以滿足 AI Agent 對實時性、多模態檢索和彈性擴展的需求。PostgreSQL 因其擴展性成為 AI 時代的數據基石,雲原生數據庫一體機通過存算分離

數據庫 , postgresql , 人工智能 , 程序員 , 後端

HuiZhu - 寫週報還在手動湊字數?試試這個結構化提示詞模板

週報:開發者的代碼之外的另一場戰鬥 週五下午 5 點,代碼提交完了,測試也跑通了,本想着可以準點下班。突然想起來:週報還沒寫。 打開文檔,腦子裏的想法是這樣的: const weeklyReport = { tasks: ['修bug', '寫代碼', '開會', '對接需求'], hours: 40, result: '???' } 問題就在這個 result 上。工作做了一堆,但該

generative-ai , 教程 , chatgpt , 人工智能 , prompt

PoloAPI - Gmail整合Gemini AI功能,支持用户直接管理日曆提升日程效率。

谷歌近期在Gmail移動應用中深度整合Gemini AI功能,實現了郵件與日程管理的無縫銜接。該功能主要通過以下創新提升用户日程效率: 一、跨應用功能整合‌ 支持在Gmail應用內直接創建、修改和刪除日曆事件,無需切換至Google Calendar或其他應用 通過"Ask Gemini"入口實現語音/文字指令操作,例如輸入“將週四會議改到下午3點”即可觸發智能修改 提供每日日程智能概覽功

gemini-2.5-pro , google , 人工智能 , 後端 , 前端

Aloudata大應科技 - ChatBI 推薦:Aloudata Agent 分析決策智能體在“歸因分析”上的突破

前言 在智能數據分析時代,企業對於數據分析的需求已超越簡單的數據呈現,更追求對數據波動背後原因的深度洞察。作為一款 ChatBI 分析決策智能體,Aloudata Agent 不止於幫助企業通過自然語言實現“智能問數”,在“歸因分析”上還實現了重大突破,通過其自主構建的 NoETL 指標語義層,提供了可組合、可追溯、可解釋、可複用的歸因分析能力,把每一次波動、每一場對比、每一個異常,都變成一次結構

agent , 人工智能 , 數據分析

MatrixOrigin - Git for Data:像Git一樣管理你的數據

作者 | 矩陣起源 策劃 | InfoQ李冬梅 當你的 AI Agent 突然清空核心數據庫,或是悄悄注入虛假數據時,傳統的數據恢復手段往往耗時費力。而 Git for Data 帶來的變革,能讓這一切像回滾代碼提交一樣簡單。 DATA-CTL RESET DATABASE `agent1_db` TO TIMESTAMP 2025-08-01 12:00:00.123456; 瞬間

數據庫 , 人工智能 , Git

mb691327edb400f - AI面試智能體

培訓預算削減的背後,是時候重新審視招聘的真正成本。 年底覆盤,不少HR對着培訓報表愁眉不展:預算花了近百萬,員工滿意度剛過及格線,業務部門還抱怨“培訓沒用”。降本增效的要求之下,培訓預算首當其衝被壓縮。問題真的出在培訓本身嗎?或許,根源在於招聘環節——選錯人,才是企業最大的成本浪費。 01 培訓無效的背後:選錯人是最昂貴的成本 當業務部門抱怨“培訓沒用”時,他們

沉浸式 , 一對一 , 人工智能 , 深度學習

短短同學 - 正則表達式進階用法:從基礎到實戰的全場景指南

正則表達式(Regular Expression,簡稱 Regex)是文本處理的 “瑞士軍刀”,它通過簡潔的語法規則,實現對字符串的匹配、提取、替換與驗證。在前文哈希機制的學習中,我們瞭解到 “映射” 是核心邏輯;而正則表達式的核心,則是 “模式定義”—— 用特定語法描述目標文本的結構,再通過解釋器執行匹配操作。本文將從基礎語法拓展到進階技巧,結合 10 + 實戰場景,帶你掌握正

正則 , bc , 人工智能 , 深度學習 , 正則表達式

未聞花名AI - 構建AI智能體:十七、大模型的幻覺難題:RAG 解決AI才華橫溢卻胡言亂語的弊病

一、拋磚引玉 經過一段時間的接觸,大型語言模型(LLM),展現出了令人驚歎的文本生成、對話和推理能力。它們飽讀詩書、才華橫溢,能夠就幾乎任何話題進行流暢的對話。然而,這個天才有一個致命的弱點:它的知識完全來源於其訓練數據,存在截止日期,並且它有時會為了保持對話的流暢性而“捏造”事實。這種現象在AI領域被稱為“幻覺”或“胡説八道”。想象一下,你結合實際問了一個問題,最新的員工

yyds乾貨盤點 , 搜索 , NLP , 數據庫 , 人工智能 , 參考資料

數據小玩子 - 【營銷數據洞察系列3】用户畫像與細分:流量持續涌入,如何精準識別其中的高價值客羣?

不同客羣的價值差異顯著,高價值客羣往往具備“高轉化、高復購、高生命週期價值(LTV)”特徵,精準識別是提升營銷效率的關鍵。利用助睿BI對訪客進行自動分羣,可全維度拆解地域、來源渠道、興趣標籤、消費偏好等數據,快速識別高轉化羣體特徵,為營銷信息精準觸達提供支持。 助睿BI鏈接:https://www.zhurui.com/

數據挖掘 , bi , 人工智能 , 數據分析

思否編輯部 - 2025 OSCAR!開源大模型系列標準解讀

開源的核心要義在於開放共享與可復現性。相較於傳統開源軟件,開源大模型的構建不僅需提供完整的模型訓練與推理源代碼,還要求充分公開模型參數、訓練數據及相關文檔。然而,開源大模型在實際應用中存在風險影響範圍廣、系統關聯複雜、生成內容風險漸進累積等特徵。當前,大模型在開放與應用過程中普遍缺乏統一的評估標準,透明度差異顯著,企業在治理體系建設方面亦存在明顯不足。為系統提升大模型的成熟度與透明度,加強企業對開

開源軟件 , 開源 , 開源項目介紹