收藏 / 列表

u_15214399 - 華為開發者空間,基於倉頡與DeepSeek的MCP智能膳食助手

本案例由開發者:給無眠點壓力提供 最新案例動態,請查閲《【案例共創】華為開發者空間,基於倉頡與DeepSeek的MCP智能膳食助手》。小夥伴快來領取華為開發者空間進行實操吧 一、概述 1. 案例介紹 MCP,全稱Model Context Protocol,中文叫“模型上下文協議”。你可以把它想象成AI的“USB 接口” --讓不同的AI模型、工具和應用程

API , 人工智能 , 深度學習 , 開發者 , Json

軟件求生 - 深夜調Bug:那次我被@OneToMany坑到懷疑人生

大家好,我是小米,一個31歲的Java後端開發者。 我發現程序員這行啊,最容易讓人“精神內耗”的不是加班、不是需求改動,而是——被註解支配的恐懼。 有一天,我在項目裏寫了一個看似普通的實體類映射,然後一運行,控制枱瞬間爆紅: com.fasterxml.jackson.databind.JsonMappingException: Infinit

Spring Boot , yyds乾貨盤點 , 遞歸 , 外鍵 , 後端開發 , jpa

曾經愛過的烤麪包 - 警用眼鏡1秒識別車輛,背後隱藏的AI浪潮如何改變你的職業?

看到交警戴上智能眼鏡的那一刻,你的職業生涯正在面臨一場革命。 近日,廣州交警一線警力開始配備新型智能眼鏡,用於路面車輛查驗工作。該眼鏡具備車牌識別與比對功能,可快速判斷車輛是否持有“十五運會”及“殘特奧會”專用車證,實現高效放行。 據交警部門介紹,以往通過警務通手動輸入車牌查詢的方式,如今被眼鏡掃描替代,查驗時間從人工輸入縮短至1到2秒,大幅提升了通行效率,減少因查驗造成的交通干擾。 智慧交管:從

人工智能

商湯萬象開發者 - LazyLLM 教程 | 第 13 講:RAG + 多模態:圖片、表格通吃的問答系統

在前面的課程中,我們探討了RAG(Retrieval-Augmented Generation)的基本原理及其在純文本處理中的應用。RAG 通過從外部知識庫檢索相關信息,結合上下文生成更準確、信息豐富的回答,從而提升基於文本的問答系統能力。 然而,現實世界中的信息並不侷限於文本,例如 PDF 文檔中的圖片、表格等多模態數據也承載着大量有價值的知識。在某些情況下,這些圖文並茂的內容比純文本更直觀、

llm , 算法 , 教程 , 人工智能 , 開源

Smartbi - Smartbi 10 月版本亮點:AIChat對話能力提升,國產化部署更安全

10 月版本煥新上線!Smartbi AIChat 與一站式 ABI 平台再升級,聚焦「交互體驗、數據效率、部署適配、安全管控」四大方向,解決溝通閉環、國產化遷移、大規模授權加載慢等實際業務痛點,讓數據分析更順暢、部署更靈活、安全更可靠,助力企業降本提效!下文為你拆解功能亮點~ 01 Smartbi AIChat 1 新增對話評論與回覆,雙向溝通更高效 AIChat 以往的反饋是單向的:用户提交問

大數據 , 版本更新 , 數據分析

DashVector - 如何通過Python SDK更新Collection中已存在的Doc

本文介紹如何通過Python SDK更新Collection中已存在的Doc。 説明 若更新Doc時指定id不存在,則本次更新Doc操作無效 如只更新部分屬性fields,其他未更新屬性fields默認被置為None Python SDK 1.0.11版本後,更新Doc時vector變為非必填項 前提條件 已創建Cluster 已獲得API-KEY 已安裝最新版SDK 接口定義

向量 , 數據庫 , 人工智能 , 大模型

葡萄城技術團隊 - 在 .NET AI 聊天應用中升級到 Microsoft 代理框架

在 .NET AI 聊天應用中升級到 Microsoft 代理框架 引言 隨着人工智能技術的快速發展,簡單的聊天機器人已經不能滿足複雜業務場景的需求。Microsoft 代理框架(Microsoft Agent Framework)為 .NET 開發者提供了構建智能代理(AI Agent)的能力,使應用程序能夠實現多步推理、工具調用和複雜工作流編排。本文將詳細介紹如何將一個基礎的 .NET AI

ai開發 , .net

華明視訊科技 - 鐵路車號識別裝置:賦能鐵路貨運智能化的核心

在現代化鐵路貨運管理中,效率與準確性是衡量運營水平的關鍵尺度。傳統依賴人工抄錄車號的方式,不僅效率低下、成本高昂,更因人為因素導致數據不準,已成為制約礦區、編組站、貨運站等場景智能化升級的瓶頸。鐵路車號識別裝置,正是為解決這一核心痛點而生的智能化解決方案。 什麼是鐵路車號識別裝置? 鐵路車號識別裝置是一套基於前沿人工智能深度學習技術的自動化識別系統。它通過高清圖像捕捉與智能分析,對貨運

機器學習 , 圖像識別 , 神經網絡 , 人工智能 , 深度學習

MIAOYUN - MIAOYUN | 每週AI新鮮事兒(10.17-10.24)

本週AI領域動態頻出,百度、阿里、DeepSeek推出高效OCR與視覺語言模型,提升文檔解析與多模態能力;騰訊、字節跳動分別開源世界模型與3D生成模型,推動3D內容生成;Anthropic、OpenAI、Google升級AI工具,聚焦生命科學、瀏覽器集成與開發體驗;華為鴻蒙6、宇樹機器人H2及多項評測基準發佈,推動AI向終端與實體場景加速落地,一起來回顧本週發生的AI新鮮事兒吧! AI 大模型 百

機器學習 , 機器人 , 自然語言處理 , 人工智能 , 深度學習

俞凡 - 10 分鐘搞定神經網絡

本文簡單介紹了神經網絡的基本原理、組成和基礎算法,並通過示例介紹了最簡單的神經網絡是如何工作的。原文:Learn How Neural Networks Work 神經網絡是人工智能中最重要的組成部分之一,若沒有神經網絡,像 ChatGPT 這樣的大語言模型就不會存在。實際上,幾乎所有深度學習模型都在某種程度上使用了神經網絡。 這就是為什麼瞭解神經網絡的工作原理如此重要。所以,讓我們重温一

人工智能

王中陽講編程 - 基於 Code 開源版二次開發流程:DDD 架構落地用户模型管理全流程

最近有基於coze開源版做二次開發,踩了不少坑,我把花了幾天時間梳理出來的開發流程分享給大家。 下面以自定義用户接入的模型舉例: coze開源版的模型是在配置文件中配置的,不夠靈活,我們希望讓用户能夠在網站直接配置自己的模型,類似下面這種效果: 大家理解清楚需求之後,看下面的實現思路,你們開發別的功能也可以參考我的開發流程,能讓你少踩很多坑: 一、領域層(Domain - 核心層,聚焦純業

程序員 , 後端

沉着的牙膏 - 運營商數據治理新範式:AI大模型賦能的低成本場景適配分類分級系統

一、概要: 隨着5G技術的推廣和數據量的急劇增長,運營商面臨着數據分類與合規管理的巨大壓力,尤其是在敏感數據的精準分類與新業務需求的快速適配方面。全知科技的“知源-AI數據分類分級系統”,該系統針對運營商在數據管理與合規方面的挑戰,提供了一種基於AI大模型賦能的低成本、場景適配性強的解決方案。該方案通過深度學習和知識圖譜技術,顯著提高了數據分類的效率和準確性,確保了數據在全生命週期中的安全與

人工智能

CodeSheep - 我天,Java 已淪為老四。。

略想了一下才發現,自己好像有大半年都沒有關注過 TIOBE 社區了。 TIOBE 編程社區相信大家都聽過,這是一個查看各種編程語言流行程度和趨勢的社區,每個月都有榜單更新,每年也會有年度榜單和總結出爐。 昨晚在家整理瀏覽器收藏夾時,才想起了 TIOBE 社區,於是打開看了一眼最近的 TIOBE 編程語言社區指數。 沒想到,Java 居然已經跌出前三了,並且和第一名 Python 的差距也進一步拉

JAVA , c , go , Javascript , Python

DM今天肝到幾點 - 我用24小時把一個瀕臨超時的任務救活【告急項目救命經驗】

寫在前面 當你正在深夜對着 IDE 狂敲代碼、看着日誌裏紅得發紫的 ERROR,卻忽然發現——速度、穩定性、成本,樣樣掣肘——別急,十分鐘後你可能會加入那個「不用為 API 報錯掉頭髮」的羣體。下面這篇實戰體驗,帶你看看我如何用 勝算雲 Router 把一個瀕臨超時的 AI 服務救活,並把本月賬單砍掉 80 %。 一、凌晨 1:42 —— 項目告急 那天凌晨,測試同事一連甩來三條 e

generative-ai , cursor , chatgpt , visual-studio , claude

vivo互聯網技術 - Android 架構模式如何選擇

作者:vivo 互聯網客户端團隊-Xu Jie Android架構模式飛速演進,目前已經有MVC、MVP、MVVM、MVI。到底哪一個才是自己業務場景最需要的,不深入理解的話是無法進行選擇的。這篇文章就針對這些架構模式逐一解讀。重點會介紹Compose為什麼要結合MVI進行使用。希望知其然,然後找到適合自己業務的架構模式 一、前言 不得不感嘆,近些年android的架構演進速度真的是飛快,拿筆者工

解耦 , mvp , mvvm , mvc

Alluxio - Alluxio在數據索引和模型分發中的核心價值與應用

在當前的技術環境下,搜索、推薦、廣告、大模型、自動駕駛等領域的業務依賴於海量數據的處理和複雜模型的訓練。這些任務通常涉及從用户行為數據和社交網絡數據中提取大量信息,進行模型訓練和推理。這一過程需要強大的數據分發能力,尤其是在多個服務器同時拉取同一份數據時,更是考驗基礎設施的性能。 在這樣的背景下,Alluxio Enterprise AI 在數據索引與模型分發/部署方面展示了其獨特的優勢,特

大數據 , 索引 , 人工智能 , 模型

AMIN - Markmap,用Markdown語法輕鬆創建思維導圖,AI助力提升工作效率

Markmap介紹 首先,什麼是 Markmap? Markmap 是一個開源項目,旨在用 Markdown 語法來製作思維導圖。 它的目的是:允許你使用簡單的 Markdown 語法來快速編寫思維導圖。 值得一提的是,中文Markmap 在此基礎上進一步引入了AI技術,實現了自動生成思維導圖的功能。 用户只需輸入內容,AI就會自動將其轉化為思維導圖,這大大地提高了工作效率,省去

思維導圖 , Markdown

Momodel - ColBERT——以詞元級別的向量嵌入提升信息檢索效果

介紹 檢索增強一代 (RAG) 自成立以來就風靡全球。RAG 是大型語言模型 (LLM) 提供或生成準確和事實答案所必需的。我們通過RAG解決LLM的事實性,我們嘗試為LLM提供一個與用户查詢上下文相似的上下文,以便LLM將處理此上下文並生成事實正確的響應。我們通過以向量嵌入的形式表示我們的數據和用户查詢並執行餘弦相似性來做到這一點。但問題是,所有傳統方法都以單個嵌入表示數據,這對於良好的檢索系統

llm , 向量 , 編碼 , 人工智能 , 檢索系統

六月的可樂🥤 - SSE請求多種實現方式總結

文前推薦一下👉 前端必備工具推薦網站(圖牀、API和ChatAI、智能AI簡歷、AI思維導圖神器等實用工具): 站點入口:http://luckycola.com.cn/ 什麼是SSE SSE(Server-Sent Events)是一種用於實現服務器主動向客户端推送數據的技術,也被稱為“事件流”(Event Stream)。它基於 HTTP 協議,利用了其長連接特性,在

typescript , HTML , 前端 , html5 , Javascript

京東雲開發者 - Dubbo架構設計與源碼解析(二) 服務註冊

作者:黃金 一、Dubbo簡介 Dubbo是一款典型的高擴展、高性能、高可用的RPC微服務框架,用於解決微服務架構下的服務治理與通信問題。其核心模塊包含 【RPC通信】 和 【服務治理】 ,其中服務治理又分為服務註冊與發現、服務容錯、負載均衡、流量調度等。今天將重點介紹Dubbo的服務註冊與發現。 二、SPI機制 在介紹服務註冊發現之前,先簡單介紹一下貫穿整個Dubbo源碼,也是Dubbo實現自適

源碼學習 , 服務註冊 , dubbo , 微服務 , 架構設計

阿里雲開發者 - 構建可靠的物聯網系統:瞭解 MQTT 性能測試

引言 近十年來,物聯網迎來了爆炸式的增長。面對海量的設備及其產生的數據,物聯網應用和服務變得越來越複雜。我們不僅要保證這些物聯網系統的業務功能正確無誤,還要保證系統能夠支持大量設備之間持續穩定地通信。 因此,我們需要通過性能測試以確保所構建的物聯網系統是穩定可靠的。 完整內容請點擊下方鏈接查看: https://developer.aliyun.com/article/1240780?utm_co

數據 , 物聯網 , 阿里雲 , 性能 , mqtt

JavaEdge - Embedding Atlas:Apple推出的開源Embedding可視化工具!

本文已收錄在Github,關注我,緊跟本系列專欄文章,咱們下篇再續! 🚀 魔都架構師 | 全網30W技術追隨者 🔧 大廠分佈式系統/數據中台實戰專家 🏆 主導交易系統百萬級流量調優 車聯網平台架構 🧠 AIGC應用開發先行者 | 區塊鏈落地實踐者 🌍 以技術驅動創新,我們的征途是改變世界! 👉 實戰乾貨:編程嚴

聚類 , yyds乾貨盤點 , 數據 , 人工智能 , 深度學習 , 開發者

美狐美顏SDK開放平台 - 直播美顏SDK中的抖動特效實現難點:識別、渲染與延遲控制全攻略

在短視頻與直播行業快速演進的今天,用户對“視覺體驗”的要求不斷提高。美顏不再僅僅是磨皮、美白、瘦臉,而是追求更具互動感和趣味性的抖動特效(ShakeEffect)。從直播美顏SDK的角度來看,要實現一個自然、不卡頓、匹配主播動作的抖動特效,其實遠比看上去複雜。 如果你是技術負責人、產品經理,或者正關注直播美顏SDK集成方案、直播特效算法開發、實時渲染優化等問題,那麼這篇文章

視頻美顏sdk , 美顏api , 人工智能 , 直播美顏sdk , 計算機視覺 , 第三方美顏SDK , 在51CTO的第一篇博文 , 美顏SDK

Fabarta - AI賦能生物醫藥,楓清科技連續中標頭部醫藥公司產業智能升級項目

在全球醫藥科技加速迭代、產業競爭日趨激烈的背景下,國家以政策為引領、以人工智能技術為核心驅動力、以全產業鏈協同為關鍵路徑,完善“AI +醫藥”系統性發展佈局。其中,《醫藥工業數智化轉型實施方案(2025—2030年)》進一步明確全鏈條轉型路徑,將AI技術定位為突破產業瓶頸、提升醫藥工業核心競爭力的核心抓手,為行業智能化升級提供清晰方向。 楓清科技緊扣“AI賦能醫藥產業全鏈條”核心目標,圍繞

人工智能