: positional encoding : triplet encoding : subject encoding : object encoding Relation Transformer (RelTR), to directly predict a fixed-size set of − −
引言 你是否曾經在訓練大型語言模型時,眼睜睜地看着 GPU 內存不斷飆升,最終因為 OOM(Out of Memory)錯誤而前功盡棄?或者在處理長序列時,發現注意力機制的計算時間呈平方級增長,讓人望而卻步? 如果你有過這樣的經歷,那麼今天這篇文章將為你帶來一個革命性的解決方案:Flash Attention2。更令人興奮的是,我們將通過 Triton 這個強大的 GPU 編程框
論文提出了動態ReLU,能夠根據輸入動態地調整對應的分段激活函數,與ReLU及其變種對比,僅需額外的少量計算即可帶來大幅的性能提升,能無縫嵌入到當前的主流模型中 論文: Dynamic ReLU 論文地址:https://arxiv.org/abs/2003.10027 論文代碼:https://githu
temperature、top_p、top_k 大模型問答的交互流程 圖片來源:阿里大模型ACP考試課件 temperature temperature和top_p的調整是發生在大模型交互流程的第四階段即輸出Token,大模型會根據候選Token的概率進行隨機挑選,這就會導致“即使問題完全相同,每次的回答都略有不同”。 在大模型生成下一個詞(