收藏 / 列表

天潤融通科技 - 天潤融通AI Agent實戰營北京站圓滿收官,引爆企業AI生產力!

10月22-23日,天潤融通AI訓練師精英計劃AI Agent實戰營第四期在北京圓滿收官,吸引了來自消費品零售、互聯網、軟件信息服務、汽車、工業製造、大健康等多個行業的80餘位精英學員。學員們在理論學習與實操演練中,掌握AI Agent搭建技能與業務落地,完成了從理念認知到實踐應用的全面進階。 在AI浪潮重塑產業格局的今天,企業正迎來從“人口紅利”向“AI紅利”轉變

人工智能 , 深度學習

fangpin - 從 1.56% 到 62.9%:SFT 推理微調優化實戰

讀完這篇文章,你將用監督微調(SFT)把一個 1.5B 規模的數學模型在 GSM8K 上的零樣本推理正確率從 1.56% → 62.9%,同時把輸出格式遵循率從 18.9% → 100%。我們將完整走通數據集下載、Prompt 架構、訓練配置和評估方法,所有代碼均來自本倉庫 alignment 文件夾,保證可復現與透明。 本文將深入剖析 llm-from-scratch

lua , 人工智能 , 深度學習 , Json , Python

IvorySQL - IvorySQL 亮相第 27 屆中國國際軟件博覽會:開源創新,共築軟件新生態

2025 年 10 月 15 日至 17 日,第 27 屆中國國際軟件博覽會(簡稱軟博會)將在鄭州國際會展中心盛大舉辦。作為我國軟件和信息技術服務領域規模最大、影響力最強的專業盛會,軟博會已成功舉辦 26 屆,歷來備受國家和社會各界高度關注。本屆軟博會以“開源構築新生態,軟件智造新未來”為主題,聚焦 AI 重塑軟件、軟件定義未來、工業軟件創新發展、開源鴻蒙生態體系建設等前沿領域,匯聚基礎軟件、工業

數據庫 , postgresql , 開源

HuiZhu - // TODO: 寫一封讓老闆秒回的郵件?試試這個AI提示詞模板

// 程序員寫郵件的日常 try { const email = writeEmail(); // 期望: 專業得體,重點突出 // 實際: 寫了刪,刪了寫,最後發出去像流水賬 } catch (error) { console.log("郵件焦慮綜合徵又犯了"); } 數據顯示,87%的程序員寫商務郵件需要30分鐘以上,其中63%的人會反覆修改超過3次。不是不會寫

generative-ai , 教程 , chatgpt , 人工智能 , prompt

PoloAPI - 谷歌正式推出 Gemini 2.5 系列模型,使 AI 推理性能提升30%。

谷歌於2025年6月正式推出‌Gemini 2.5系列模型‌,核心聚焦推理效率與多模態能力升級,具體解讀如下: 🚀 ‌一、三大模型定位與技術亮點‌ ‌Gemini 2.5 Pro‌ ‌角色定位‌:主攻複雜推理與多模態分析(“思考型模型”),在數學、編碼任務中刷新LMArena榜單記錄。 ‌上下文能力‌:支持100萬token輸入(計劃擴展至200萬),可解析代碼庫、大型數據集及混合媒

llm , 算法 , google , 人工智能 , 深度學習

一點人工一點智能 - 書籍-《優化技術第二卷:離散與函數優化》

書籍:Optimization Techniques II:Discrete and Functional Optimization 作者:Max CERF 出版:EDP Sciences​​ 編輯:陳萍萍的公主@一點人工一點智能 鏈接:書籍下載-《優化技術第二卷:離散與函數優化》 01 書籍介紹 這套分為兩卷的書籍概述了連續、離散和函數優化技術。本卷專注於離散優化

函數 , 離散數學

Aloudata大應科技 - 如何找到心儀的 ChatBI 智能體?Aloudata Agent 推薦給你

在數智化轉型浪潮中,ChatBI 智能體憑藉自然語言交互能力,成為企業打破數據分析壁壘、實現數據民主化的關鍵工具。面對市場上眾多選擇,Aloudata Agent 以“NoETL 明細語義層+多 Agent 協同架構”脱穎而出,通過 NL2MQL2SQL(MQL:MetricQueryLanguage)技術路徑精準對齊業務語義與數據語言,解決了 NL2SQL 和 NL2DSL2SQL 傳統方案中存

chat , agent , etl , 人工智能 , 數據分析

全棧技術開發者 - LLM 對時間序列推理的增強究竟指的是什麼?LLM 對齊(alignment regimes)與時序推理的可靠性之間是什麼關係?

時間序列數據廣泛出現於自然科學、社會科學以及工程技術等各類領域中,其核心特徵在於數據隨時間的演變規律。長期以來,如何從這些動態變化的數據中提取有價值的信息、實現精準預測、並基於歷史數據進行推理,一直是數據分析、統計學和機器學習研究的核心問題。傳統的時間序列分析方法,如自迴歸模型(AR)、移動平均模型(MA)、以及更復雜的狀態空間模型和卡爾曼濾波器,在一定程度上能夠描述和預測數據的

llm , 建模 , yyds乾貨盤點 , 人工智能 , 時間序列 , 深度學習 , 大模型