收藏 / 列表

慧星雲 - 魔多 AI 支持 Wan 系列在線訓練 :解鎖視頻生成新高度

Wan 阿里巴巴通義實驗室推出的 Wan 系列模型憑藉突破性的技術架構與卓越的生成能力,成為行業關注的焦點。為助力開發者與創作者深挖視頻生成技術潛力,魔多 AI 社區正式宣佈全面支持通義萬相 Wan2.1 與 Wan2.2 兩款重磅視頻模型的訓練服務,為不同場景的創作需求提供專業級技術支撐。 Wan2.1Wan2.2 Wan2.1 Wan2.1 採用自研高效變分自編碼器(VAE)與

雲平台 , 雲計算 , 雲服務 , aigc

美狐美顏SDK開放平台 - 直播美顏SDK中的抖動特效實現難點:識別、渲染與延遲控制全攻略

在短視頻與直播行業快速演進的今天,用户對“視覺體驗”的要求不斷提高。美顏不再僅僅是磨皮、美白、瘦臉,而是追求更具互動感和趣味性的抖動特效(ShakeEffect)。從直播美顏SDK的角度來看,要實現一個自然、不卡頓、匹配主播動作的抖動特效,其實遠比看上去複雜。 如果你是技術負責人、產品經理,或者正關注直播美顏SDK集成方案、直播特效算法開發、實時渲染優化等問題,那麼這篇文章

視頻美顏sdk , 美顏api , 人工智能 , 直播美顏sdk , 計算機視覺 , 第三方美顏SDK , 在51CTO的第一篇博文 , 美顏SDK

短短同學 - 大模型的秘密:從三元一次方程組到KV Cache

大模型的秘密:從三元一次方程組到 KV Cache 當我們驚歎於大模型生成流暢文本、解答覆雜問題的能力時,其底層核心並非不可捉摸的 “黑魔法”,而是從基礎數學逐步構建的精密系統。從初中數學的三元一次方程組,到 Transformer 架構中的 KV Cache 優化,這條技術脈絡清晰展現了 “簡單原理→複雜擴展→效率突破” 的進化路徑。本文將拆解這一過程,揭開大模型高效運行

方程組 , 線性變換 , 緩存 , 人工智能 , 深度學習

fangpin - 從0到1:揭秘LLM預訓練前的海量數據清洗全流程

讀完這篇文章,你將用監督微調(SFT)把一個 1.5B 規模的數學模型在 GSM8K 上的零樣本推理正確率從 1.56% → 62.9%,同時把輸出格式遵循率從 18.9% → 100%。我們將完整走通數據集下載、Prompt 架構、訓練配置和評估方法,所有代碼均來自本倉庫 alignment 文件夾,保證可復現與透明。 本文將深入剖析 llm-from-scratch

lua , 人工智能 , 深度學習 , Json , Python

colddawn - linux將vncserver製作成systemd

第三課:Linux的基本操作 一般都會建立一個linux服務器,然後windows通過小軟件vnc遠程登陸linux服務器,登陸方式就是:”服務器ID:端口號“,此處的冒號為英文冒號; 一個賬户可以打開多個vnc端口,開啓:vncserver ,太多了則會佔用較多資源,可以手動關閉; 若vnc遠程屏幕分辨率與本地

機器學習 , 當前目錄 , 文件名 , Linux , 人工智能 , 根目錄 , 後端

IvorySQL - 無需安裝!PostgreSQL 18 Windows 便攜部署方案

在 Windows 環境中使用 PostgreSQL 的常見做法是下載安裝程序並進行配置。該方式操作簡便,可自動完成依賴組件和系統服務的部署。然而,對於無需 PostgreSQL 持續運行、需要在多個版本之間靈活切換,或希望具備可複製至任意計算機並直接運行的便攜式環境的場景,本文將介紹一種更靈活的實現方案。 該方案僅適用於個人開發環境。在未進行安全加固的情況下,不應將其用於共享或生產部署等場景。

數據庫 , postgresql

HuiZhu - 技術人做活動策劃?這個AI指令幫你搞定專業方案

作為開發者或技術leader,你有沒有遇到過這種情況:老闆突然讓你負責技術沙龍、產品發佈會或者團隊建設活動,你對着PPT發呆半天,不知道從哪兒開始? 我之前也遇到過。明明寫代碼很溜,一到策劃活動就抓瞎——預算怎麼算?流程怎麼設計?風險怎麼控制?感覺每個環節都是坑。 技術人策劃活動的三大痛點 跟幾個做過活動的技術朋友聊過,大家的困擾出奇一致: 1. 不知道完整流程包含什麼 策劃案要寫哪些部分?

generative-ai , chatgpt , 人工智能 , 活動 , prompt

PoloAPI - Kimi K2 日調用量超100億 token,API 價格低於 Claude 系列模型

一、Kimi K2模型基本信息 Kimi K2是由北京月之暗面科技有限公司(Moonshot AI)於2025年7月11日發佈的開源大語言模型,具有以下核心特點: ‌架構創新‌:採用MoE(混合專家)架構,總參數規模達1萬億(1T),激活參數為320億(32B),包含384個專家模塊,每個token選擇8個專家進行計算 ‌性能表現‌:在SWE Bench Verified、Tau2、AceB

編程 , llm , 算法 , 人工智能 , 後端

一點人工一點智能 - 書籍-《動手幾何:通過編程、3D打印與構建來學習》

​編輯:陳萍萍的公主@一點人工一點智能 書籍:Make: Geometry: Learn by coding, 3D printing and building 作者:Joan Horvath,Rich Cameron 出版:Make Community, LLC 下載:書籍下載-《動手幾何:通過編程、3D打印與構建來學習》 01書籍介紹 在數學的眾多分支中,幾何是

三維建模 , 視覺設計 , 3d , 計算機視覺

Aloudata大應科技 - 企業級智能問數四問:從“語義鴻溝”到“統一認知”

在數據分析領域,大模型的落地實踐正掀起一場變革風暴。“智能問數”被描繪為數據民主化的終極形態——業務人員無需依賴開發或分析師,僅憑自然語言即可獲得精準、可行動的數據洞察。這一願景極具誘惑力,也催生了大量技術投入。然而,在無數企業轟轟烈烈的實踐中,這條通往數據民主化的道路卻佈滿荊棘。本文將通過四個核心問題的探討,剖析企業級智能問數的真正內涵、核心挑戰、技術基石與成功實踐,揭示為何“語義編織”(Sem

自然語言處理 , 數據庫 , chatgpt , 人工智能

mb691327edb400f - AI人工智能

在數字化轉型加速與人才競爭白熱化的當下,企業招聘正陷入前所未有的多重困局。一方面,經濟下行壓力下企業招聘預算普遍收緊,但業務擴張、人才迭代帶來的崗位需求卻愈發迫切,人才市場中核心崗位的薪酬成本持續攀升,HR團隊卻往往面臨人手不足、技術工具匱乏的資源困境;另一方面,海量簡歷如同“信息海洋”,HR僅依靠人工逐一審閲不僅耗時耗力,還易因主觀判斷出現疏漏,即便經過多輪面試,仍常出現候選人

數據 , 人工智能 , 深度學習 , 迭代

未聞花名AI - 構建AI智能體:十六、構建本地化AI應用:基於ModelScope與向量數據庫的文本向量化

將文本轉換為向量(文本嵌入)是自然語言處理中的核心任務,有許多大模型可以完成這項工作。上一篇文章《構建AI智能體:十五、超越關鍵詞搜索:向量數據庫如何解鎖語義理解新紀元》我們是通過阿里雲的api調用的text-embedding-v4模型,同樣還有很多其他輕量級的模型可以很好的完成這個任務,我們今天找兩個結合前期講到的本地化部署來嘗試一下。 一、核心組件回顧

yyds乾貨盤點 , 搜索 , NLP , 相似度 , 加載 , 人工智能

吳大同 - 輕鬆上手 qData 數據中台開源版:Docker Compose 助你10分鐘跑起來

説在前面 誰適合看這份指南? 初次接觸 qData,希望快速體驗功能的小夥伴 不想折騰複雜環境配置和前端打包的人 想用“一鍵啓動”省事體驗完整平台的用户 我們已經為你準備好“開箱即用”的完整部署包,包括: ✅ 前端靜態資源(打包好的 dist 文件夾) ✅ DolphinScheduler 調度器(無需額外安裝) ✅ Hadoop 全家桶(HDFS + YARN) ✅ Flin

大數據 , 開源軟件 , 數據中台 , JAVA , 數據治理平台