tag 自然語言處理

標籤
貢獻44
105
07:11 PM · Oct 26 ,2025

@自然語言處理 / 博客 RSS 訂閱

六邊形架構 - 大模型應用開發技術路線(中):大模型微調與定製從概念到落地

文 / 勇哥 原創文章,轉載請聯繫授權 關注公眾號「六邊形架構」,及時瞭解更多的技術分享和項目經驗 我是勇哥,一名在技術領域摸爬滾打10多年的技術老兵。繼上一篇《大模型應用開發技術路線(上):從概念到RAG實戰,這套方法論讓我從0到1落地企業級AI應用》之後,我想跟大家分享一下我在學習和應用大模型應用開發過程中對於大模型微調與定製的一些經驗和發現。 今天,讓我們深入剖析大模型微調

觀點 , llm , 算法 , 自然語言處理 , 人工智能

收藏 評論

容智信息 - 量化智能體價值:一套指標體系,讓企業高管精準掌控AI運營的效率與質量躍遷

在企業數字化轉型的浪潮中,智能體(AI/RPA智能應用)的上線絕非終點,而是價值兑現的新起點。對於企業CEO、技術總監而言,如何量化智能體給運營效率、質量乃至業務增長帶來的真實變化?如何判斷智能體是否“物有所值”,甚至在不達預期時推動優化迭代?容智信息的“智能體指標追蹤表”,構建了一套穿透運營全維度的指標體系,為企業高層提供決策級的價值洞察。 許多企業在智能體上線後,僅以“

資訊 , 機器人 , 自然語言處理 , 教程 , 人工智能

收藏 評論

容智信息 - 企業AI智能體落地破局:5大行動建議,助管理層實現智能體從“用起來”到“價值永續”

在企業數字化轉型的賽道上,智能體(AI/RPA等智能應用)是公認的效率引擎與增長利器。但對於企業管理層而言,“如何讓智能體真正落地生效?如何避免淪為短期工具、實現長期價值放大?”這些問題始終縈繞心頭。容智信息基於數百個企業智能化項目的實戰沉澱,提煉出五大行動建議,為管理層繪製出從“智能體落地”到“價值持續深耕”的清晰路線圖。 許多企業管理層對智能體落地的最大顧慮,是“投入大

資訊 , 機器人 , 自然語言處理 , 知識 , 人工智能

收藏 評論

MIAOYUN - MIAOYUN | 每週AI新鮮事兒(10.31-11.07)

本週AI領域動態密集,美團、360、銀河通用、字節、騰訊、Kimi與科大訊飛等分別發佈多模態、圖文、導航及視頻推理模型;工具層面,寒武紀、百度、崑崙萬維、騰訊均推出新平台或功能。技術方面,在長序列處理、多智能體協同及代碼執行效率上取得突破。市場方面,OpenAI與AWS達成鉅額合作,小鵬發佈人形機器人「IRON」。整體呈現高效化、多模態與實用化趨勢,一起來回顧本週發生的AI新鮮事兒吧! AI 大模

資訊 , 機器人 , 自然語言處理 , 人工智能 , 深度學習

收藏 評論

容智信息 - 企業智能體落地指南——拆解7大關鍵問題,附實戰避坑策略

在企業智能化轉型的進程中,智能體(AI/RPA等智能應用)本應是撬動效率與價值的槓桿,但不少企業管理層卻因踩入隱性“深坑”,導致項目延期、投入打水漂甚至引發業務風險。容智信息基於數百個企業智能化項目的實戰覆盤,提煉出智能體落地最容易踩的7大深坑及避坑核心思路,助力企業管理層在智能體佈局中“避坑增效”,讓數字化投入真正轉化為業務增長動能。 部分企業為追求“全自動化”,將核心業

機器人 , 自然語言處理 , 人工智能 , 深度學習

收藏 評論

容智信息 - AI賦能職場:個體即團隊,效能倍增新範式

近期多項行業實踐顯示,AI工具已深度滲透職場場景:銀行合同審查AI系統可自動識別合規風險點並標註,智能協作平台3分鐘即可完成原需3小時的信貸初審文書,行政領域的AI應用亦實現日程聯動、會議室預訂及考勤統計的自動化。這一趨勢引發部分職場人士對“崗位替代”的擔憂,但本質上,AI並非職場競爭者,而是推動效率升級與價值重構的核心助力。如同20年前Excel工具作為辦公神器,當前AI工具的核心價值在

資訊 , 機器人 , 自然語言處理 , 知識 , 人工智能

收藏 評論

容智信息 - 企業AI落地破局:五步行動指南,從價值試點到組織效能躍遷

在AI技術熱潮下,不少企業陷入“概念喧囂卻落地無門”的困境——空有技術憧憬,卻不知從何入手,或盲目鋪開後效果寥寥。容智信息基於千餘家企業智能化實踐沉澱,提煉五步行動指南,為企業提供從“AI可用”到“價值可感”的清晰路徑。 AI落地切忌“大而全”的盲目投入,需優先選擇對業務有直接價值、流程相對清晰、出錯影響可控的高價值任務切入。例如:市場營銷領域:可先試點產品智能推薦、市場策略

觀點 , 資訊 , 自然語言處理 , 人工智能 , 深度學習

收藏 評論

mob649e815d334b - llama 7b原理

LLaMA 7B原理:探討與解析 LLaMA(Large Language Model Meta AI)是Meta發佈的系列大型語言模型,其中7B代表其參數量為70億個。該模型致力於提高生成預訓練模型的性能,致力於在自然語言處理(NLP)任務上取得突破。本文將探討LLaMA 7B的技術原理、架構解析、源碼分析以及擴展討論,旨在為讀者提供一個全面的理解框架。 背景描述 在過去的

初始化 , 自然語言處理 , aigc , ci

收藏 評論

OpenBayes - DiffVox 打造下一代聲效模型;面部情感識別數據集讓 AI 讀心術成真!

公共資源速遞 6 個公共數據集: Freebayes_Benchmark 基準測試集 DiaMoE-TTS 多方言語音表音數據集 APEX 人工智能生產力評測基準數據集 BWA_Benchmark(SBC)基準測試集 DeePMD-kit_Example 勢能模型示例數據集 Facial Emotion Recognition 面部情感識別數據集 5 個公共教程 : DiffV

機器學習 , 圖像識別 , 自然語言處理 , 人工智能 , 深度學習

收藏 評論

OpenBayes - 跨語言智能再升級!Multi-LMentry 打造多語理解新基準;Nemotron-Personas-USA重塑虛擬人畫像生成

公共資源速遞 5 個公共數據集: Life Style Data 生活方式數據集 Multi-LMentry 多語言基礎任務評測基準 Nemotron Personas USA 美國人物畫像數據集 The Diabetes Health Indicators 糖尿病健康指標數據集 Global Earthquake-Tsunami Risk 全球地震海嘯風險評估數據集 訪問官網立即使

機器學習 , 圖像識別 , 自然語言處理 , 人工智能 , 深度學習

收藏 評論