收藏 / 列表

mob64ca12d42833 - 如何修改llama模型的每層的結構

如何修改llama模型的每層的結構 在深度學習領域,llama模型由於其出色的性能被廣泛應用於自然語言處理(NLP)任務。然而,隨着具體業務需求的不斷變化和技術的持續發展,我發現需要對llama模型的每層結構進行修改以提升模型的適應性和效果。本文將詳細記錄這個過程,包括相關的背景信息、問題現象、深層次的根因分析、具體的解決方案、驗證測試結果,以及預防優化的方法。 問題背景 隨

加載 , 權重 , aigc , 解決方案

mb68738fa1c4e31 - ? TRAE SOLO 3.0 實戰速通指南:在編程馬拉松中打造高分產品的五步策略?

🏆 TRAE SOLO 3.0 實戰速通指南:在編程馬拉松中打造高分產品的五步策略 🎯 引言:黑客馬拉松的評審維度 大家好,我是圍巾哥蕭塵,昨天參與了武漢 TRAE 黑客馬拉松的評審工作,本次活動有 80 多人蔘與,共產生了 40 多個產品,其中 20 個產品入圍了路演階段。 作為評審,我們主要從以下三個關鍵維度來評估作品的質量和潛力:

app , 功能結構 , AI寫作 , aigc

mob64ca12d1a59e - idea copilot切換用户

在使用 IntelliJ IDEA Copilot 的過程中,用户之間的切換可能會遭遇一些問題。隨着業務需求的增加,協作開發的方式也逐漸顯現出更高的複雜性,特別是當需要頻繁切換用户時,可能會導致環境配置的錯亂、參數失效等問題。本文將逐步分析這一問題的背景、演進歷程、架構設計、性能攻堅以及擴展應用,為開發者同行提供參考和解決思路。 背景定位 在現代軟件開發過程中,團隊成員往往需要使

壓測 , 架構設計 , aigc , 環境配置

mob649e8166179a - ollama 哪個接口返回模型

ollama 是一個非常有趣的工具,對於數據模型的返回接口有很多應用場景。在這一篇博文中,我們將一步步深入到"ollama 哪個接口返回模型"的問題,系統地闡述解決的過程,包括環境準備、集成步驟、配置詳解、實戰應用、性能優化和生態擴展。我們會通過一些圖示來幫助理解,讓整個過程更直觀。 環境準備 在開始之前,我們需要為項目做一些準備工作。確保你已經安裝了以下依賴: Py

數據 , API , aigc , Docker

mob64ca12dc88a3 - ollama linux下載模型位置

ollama linux下載模型位置的描述 在現代機器學習和人工智能發展的背景下,模型的下載和使用變得愈發重要。對於使用ollama的用户,確保Linux環境中的模型下載位置正確配置是實施高效工作流程的關鍵。本文將詳細記錄如何解決“ollama linux下載模型位置”的問題,以便在實際應用中提供充分支持。 環境準備 在正式進行模型下載配置之前,首先需要確保Linux環境配置

硬件資源 , bash , aigc , ci

mob64ca12f062df - ollama 限制大模型使用gpu

ollama 限制大模型使用gpu 在我最近的項目中,我遇到了一個關於“ollama”限制大模型使用 GPU 的問題。這對於任何需要高性能計算資源的深度學習應用來説,都是一個棘手的障礙。本文將詳細記錄解決這一問題的過程,從背景描述到技術原理,再到架構解析和代碼分析,力求清晰呈現整個解決思路。 背景描述 首先,讓我們瞭解一下該問題的背景——為何會出現“ollama”限制大模型使

aigc , Processing , ci , Python

mob64ca12ebf2cc - AIGC提示詞工程樣本

AIGC提示詞工程樣本 在當今的信息技術行業,如何有效地應用AIGC(人工智能生成內容)提示詞工程顯得尤為重要。本文將通過系統化的步驟,展示如何解決AIGC提示詞工程樣本的問題。 環境準備 為了順利進行,我們需要先安裝必要的依賴。以下是跨平台安裝命令: # Ubuntu sudo apt-get install python3-pip # MacOS brew inst

API , aigc , JAVA , Json

網易雲信IM - 領跑招採數字化!招採會議組件,以合規與效率重構行業標準

在國家加快建設全國統一大市場、推廣遠程異地評標的政策導向下,招採行業正迎來數字化轉型的關鍵拐點。遠程異地評標、在線開標、多方會商等場景已從 “可選” 變為 “必選”,但招採平台廠商普遍面臨三大核心痛點:音視頻技術研發門檻高、系統集成成本高昂、政策適配響應滯後。作為深耕音視頻通信領域十餘年的頭部企業,網易雲信依託億級用户服務經驗與深厚技術沉澱,重磅推出業界首個全面遵循《遠程異地評標

音視頻 , 會議組件 , aigc , bard , 招採 , 解決方案 , 遠程異地評標

mob649e815574e6 - copilot用户切換

在使用Copilot的過程中,我遇到了一個棘手的“用户切換”問題。這個問題讓我的工作效率受到了嚴重影響,導致我在項目開發中反覆遭遇類似的困擾。因此,我決定記錄下這個問題的詳細過程,以便未來能夠更好地解決。以下是我對這一問題的分析與解決過程。 問題背景 在我的日常開發中,經常需要多次切換不同的用户身份以進行權限測試。比如,我在一次大型應用的開發中,需要切換至管理員、普通用户及訪客用

User , System , aigc , 解決方案

mob64ca12e51ecb - langchain_text_splitters 根據特殊符號分割

在處理文本分析和自然語言處理的過程中,文本分割是一個普遍的需求。在這一領域,我採用了langchain_text_splitters庫來實現根據特殊符號進行分割,解決了文本預處理中的關鍵問題。這篇博文將詳細描述我的探索過程和實現方案,包括初始技術痛點的分析、關鍵決策節點、系統架構設計、性能攻堅過程、故障覆盤以及擴展應用場景。 背景定位 文本處理中的初始技術痛點主要集中在如何有效地

System , aigc , 正則表達式 , 子節點

yzy121403725 - 常見模型部署環節優化技術微調、剪枝、蒸餾、量化等

模型優化技術 —— 目的都是讓訓練好的模型更適配部署環境(如低算力設備、低延遲場景),同時儘可能保留模型性能(精度、效果) 一、微調(Fine-tuning):讓模型 “適配新場景” 1. 核心定義 微調是在預訓練模型(如 BERT、ResNet)的基礎上,用少量目標場景的數據集繼續訓練,調整模型參數以適配具體任務或環境的過程。可以理解為:預訓練模型已經 “學會

部署模型優化技術 , aigc , llama