博客 / 列表

ceshiren2022 - Playwright MCP:AI驅動自動化測試,輕鬆告別傳統腳本編寫

2025年初,某知名電商公司在引入Playwright MCP後,UI自動化測試腳本編寫時間從原來的3天減少到2小時,測試覆蓋率提升了40%,而這一切,測試人員幾乎沒有編寫一行傳統腳本。 在傳統的UI自動化測試中,測試人員需要編寫大量腳本和選擇器來模擬用户操作。然而,隨着人工智能技術的快速發展,對話式自動化正在改變這一格局。 Playwright作為微軟開源的現代化We

選擇器 , 服務器 , 人工智能 , 深度學習 , 自動化測試

ceshiren2022 - 輕鬆生成測試數據:Dify工作流結合大模型,實現百萬級逼真數據生成

在軟件研發、數據分析和機器學習項目中,構建高質量、高覆蓋度的測試數據是確保產品質量的關鍵環節。然而,手動創建測試數據不僅耗時耗力,還常常面臨數據單調、缺乏真實性、難以模擬複雜業務邏輯等痛點。尤其是在進行壓力測試、性能基準測試或訓練複雜模型時,對百萬級逼真測試數據的需求,往往讓開發者和測試工程師們頭疼不已。 今天,我們將介紹一種革命性的解決方案:利用 Dify 工作流 結合 大語言模型(L

數據 , 測試數據 , 人工智能 , 深度學習 , Json

ceshiren2022 - 構建智能測試閉環:深入解析ReAct範式與LangGraph的實用應用

一、ReAct範式簡介 在AI智能測試和Agent開發中,ReAct(Reasoning + Acting)範式是核心方法。它通過邊思考邊行動的方式,實現智能體閉環動態決策。 • Reasoning(推理):分析任務信息、環境狀態和歷史數據,生成下一步行動策略。 • Acting(行動):根據策略執行動作,如調用接口、生成測試用例或運行任務。 🔹 對測試開發人員來説,ReAct能讓

react , 智能體 , 人工智能 , 深度學習

ceshiren2022 - 簡化接口測試:利用Dify工作流結合CI/CD,實現一鍵式迴歸驗證

在敏捷開發與DevOps成為主流的今天,我們追求的是快速迭代、持續交付。然而,每當新功能開發完成或代碼發生變更時,繁瑣的接口迴歸測試往往成為流程中的“剎車片”。手動執行測試用例、核對響應數據、撰寫測試報告……這些重複性工作不僅效率低下,還容易出錯,嚴重拖慢了交付節奏。 有沒有一種方法,能將接口測試無縫嵌入到CI/CD流水線中,實現一鍵觸發、全自動迴歸驗證,並將結果清晰可溯地反饋給團隊?答

API , 人工智能 , 深度學習 , dify , 接口測試

ceshiren2022 - 避開 Playwright 常見陷阱,讓你的 UI 測試更加快速與穩定

近年來,Playwright 作為一款跨瀏覽器、跨平台的端到端自動化測試框架,越來越多的測試團隊選擇它替代 Selenium 或 Puppeteer。 它提供了強大的 API 和智能等待機制,但在實際項目中,很多團隊仍會遇到各種坑。今天,我們結合行業實踐經驗,總結 Playwright 最容易踩的坑及解決方案,讓你的測試更快、更穩定。 1. 按風險級別組織測試 坑點:按功能模塊組

playwright , 測試數據 , 人工智能 , 深度學習 , 解決方案 , ui

ceshiren2022 - 提升測試效率5倍!Dify驅動的可視化工作流實現自動化測試“開箱即用”

在快速迭代的軟件開發週期中,測試環節往往成為交付瓶頸。傳統自動化測試需要大量編碼工作,維護成本高昂,讓許多團隊望而卻步。 現在,通過Dify的可視化工作流,即使是測試新手也能快速構建專業的自動化測試體系,實現真正的“開箱即用”。 一、傳統自動化測試的困境與破局 為什麼傳統自動化測試難以普及? 1.技術門檻高 # 傳統測試腳本示例 - 需要專業的編程能力 from sele

人工智能 , 深度學習 , dify , 自動化測試 , Docker , 瀏覽器版本

ceshiren2022 - 藉助Dify工作流構建AI測試智能體,效率提升可達500%

在軟件開發領域,測試工作一直是保障產品質量的關鍵環節,但傳統的手工測試用例編寫方式效率低下且容易遺漏邊界場景。每個新功能上線,測試團隊都需要手動編寫大量測試用例,這個過程不僅耗時耗力,而且極易出錯。 通過Dify工作流,我們可以構建智能測試AI體,實現測試效率500%的提升,徹底告別測試的"手工作坊"時代。 一、痛點分析:為什麼測試工作急需變革? 傳統測試開發的困境 在引入D

測試用例 , 測試數據 , 人工智能 , 深度學習 , dify

ceshiren2022 - Dify vs Coze:誰是最終的AI工作流解決方案?

關注 霍格沃茲測試學院公眾號,回覆「資料」, 領取人工智能測試開發技術合集 在人工智能技術飛速發展的今天,低代碼/無代碼AI工作流平台正成為企業和開發者快速構建智能應用的首選工具。Dify和Coze作為兩款備受關注的開源項目,憑藉各自優勢吸引了大量用户。 本文將從架構設計、工作流能力、適用場景等多維度深入對比這兩大平台,幫助您根據實際需求做出最佳選擇。 一、核心概覽

coze , 人工智能 , 深度學習 , dify