收藏 / 列表

ERP老兵_冷溪虎山 - Python/JS/Go/Java同步學習(第三十六篇)四語言“內置函數計算(下)“對照表

🤝 免罵聲明: 本文內置函數計算(下)操作經本蜀黎實戰整理,旨在提供快速參考指南📝 因各語言版本迭代及不同系統環境差異,偶爾可能出現整理不全面之處,實屬正常✅ 理性討論歡迎,無憑據攻擊將依據平台規則處理,並可能觸發內容自動備份傳播機制🙏! 若遇具體問題,請帶圖評論區留言,本蜀黎必拔碼相助🤝 ※ 温馨提示 若本內容不慎觸及某些利益,請理性溝通,

node.js , JAVA , go , Javascript , Python

oioihoii - Python與C++:從哲學到細節的全面對比

Python和C++是兩種在當今軟件開發領域佔據主導地位的語言,但它們的定位、設計哲學和應用場景有着天壤之別。Python以其簡潔、直觀的語法和“內置電池”的理念,致力於讓開發者用更少的代碼做更多的事,強調開發效率和可讀性。而C++則是由C語言發展而來,以其對硬件底層的控制能力、極高的運行效率和靈活性著稱,信奉“零開銷抽象”原則,即你不用的東西不需要付出代價,你用的東西則能被最優地實現。

後端開發 , harmonyos , 縮進 , 代碼塊 , Python

Hankin_Liu收徒 - 深入理解 C++ happens-before:高級併發程序員的必修課

一、引言:為什麼需要 happens-before? 在多線程程序中,“語句順序” ≠ “執行順序”。 現代 CPU 和編譯器會對指令重排,只要單線程的結果不變,就可以自由優化。 然而,在併發場景下,這會導致嚴重的問題: bool ready = false; int data = 0; void writer() { data = 42; ready = true;

c++ , 多線程

星辰大海 - 自制遊戲

!DOCTYPE html html lang="zh-CN" head meta charset="UTF-8" meta name="viewport" content="width=device-width, initial-scale=1.0" title幾何衝刺 - 隨機關卡/title style * { margin: 0; pad

chrome

小萬哥 - C# 面向對象編程進階:構造函數詳解與訪問修飾符應用

C# 構造函數 構造函數是一種特殊的方法,用於初始化對象。構造函數的優勢在於,在創建類的對象時調用它。它可以用於為字段設置初始值: 示例 獲取您自己的 C# 服務器 創建一個構造函數: // 創建一個 Car 類 class Car { public string model; // 創建一個字段 // 為 Car 類創建一個類構造函數 public Car() { m

服務器 , c# , 程序員 , 後端 , asp.net

1412 - Workflow通用併發控制組件:ResourcePool資源池

開源項目Workflow是C++異步調度的高性能框架,廣泛用於高吞吐低延遲的網絡服務器、並行計算和組裝複雜網絡請求的客户端等領域。在異步調度的編程範式下,想要實現併發控制是非常困難的,因為一旦無法做到無阻塞的調度,那麼框架性能就會大打折扣。 線上非常常見的場景是:異步服務器需要限制用户的併發,從而保護有限的後端資源比如GPU計算,並在超載時可以立刻拒絕用户或者實施排隊等待的處理策略。 一個好的併發

workflow , github , c++ , 開源 , 併發

點墨 - likely()/unlikely()宏的編譯器優化機制分析

引言 在Linux內核源碼中,我們經常看到if(likely(condition))和if(unlikely(condition))這樣的代碼結構。這些宏通過指導編譯器進行分支預測優化,可以顯著提升程序性能。本文將深入分析其工作原理,並通過彙編代碼展示實際優化效果。 核心原理 likely()和unlikely()宏的本質是調用GCC內置函數: #define likely(x) __buil

likely-unlikely , 編譯 , Linux , 優化

hedzr - 談 C++17 裏的 Observer 模式 - 4 - 信號槽模式

上上上回的 談 C++17 裏的 Observer 模式 介紹了該模式的基本構造。後來在 談 C++17 裏的 Observer 模式 - 補/2 裏面提供了改進版本,主要聚焦於針對多線程環境的暴力使用的場景。再後來又有一篇 談 C++17 裏的 Observer 模式 - 再補/3,談的是直接綁定 lambda 作為觀察者的方案。 Observer Pattern - Part IV 所以嘛,我

觀察者模式 , c++11 , 設計模式 , design-pattern , c++17

kedixa - Coke(三):使用HttpClient的更多功能

Coke項目Github主頁。 上一篇文章通過幾個示例介紹瞭如何使用Coke便捷地發起Http請求,本文延續上一個話題,將coke::HttpClient的功能詳細地介紹一下。 在C++ Workflow中,Http任務通常通過工廠函數創建,並且可以指定重試次數等參數。而在Coke中可以通過coke::HttpClient來創建Http任務。首先介紹一下與任務相關的參數 struct HttpCl

c++20 , 協程 , c++

輕口味 - Rokid Glasses 移動端控制應用開發初體驗-助力業務創新

前言 在AI時代,一方面大家在提升模型這個”大腦“的能力,另一方面也在不斷地給”大腦“配備各種”外設“,錄音筆和AI眼鏡就是很好的切入點。而AI眼鏡因為與人眼、人耳處在同一個角度,可以以更自然真實的角度去採集音頻與視頻,"第一視角拍攝"和"長在眼前的AI助手"成為大家採購智能設備的首選。本文介紹AI眼鏡的佼佼者Rokid Glasses的產品、能力,以及如何從零開發一個Rokid Glasses配

智能硬件 , Android

Plume岣七 - [Linux]探索進程的奧秘:從硬件到軟件的全面解析

在計算機科學中,進程是一個至關重要的概念。它是操作系統中最基本的執行單元,也是實現併發和多任務處理的關鍵。《操作系統概念》一書中提到:"進程是正在執行的程序,是程序執行過程中的一次指令、數據的集合,也可以叫做程序的一次執行過程。"然而,要真正理解進程,需要我們跨越硬件和軟件開始,深入探索期底層原理和工作機制。 一.硬件:馮諾依曼體系結構 1.核心框架 馮諾依曼體

進程概念 , 馮諾依曼體系結構 , 優先級 , 操作系統 , 狀態 , c++ , 後端開發 , c

小康 - 別再被多線程搞暈了!一篇文章輕鬆搞懂 Linux 多線程同步!

前言 大家有沒有遇到過,代碼跑着跑着,線程突然搶資源搶瘋了?其實,這都是“多線程同步”在作怪。多線程同步是個老生常談的話題,可每次真正要處理時還是讓人頭疼。這篇文章,帶你從頭到尾掌握 Linux 的多線程同步,把概念講成大白話,讓你看了不再迷糊,還能拿出來裝一裝逼!不管是“鎖”、“信號量”,還是“條件變量”,我們都一網打盡,趕緊點贊收藏,一文搞懂! 一、什麼是線程同步?——“排隊來操作,按規矩走”

linux編程 , c++ , 多線程

mb65950ac695995 - 十三、PC 高刷新顯示與可變刷新率(VRR)下的插幀策略

在支持 120/144/240Hz 的顯示器上,插幀能顯著改善低幀率內容的體驗。與 VRR(G-Sync/FreeSync)配合,渲染與顯示的同步問題更復雜。插幀管線應與顯示時序協調,確保中間幀在合適的掃描時刻輸出。對於低延遲需求的競技遊戲,需謹慎啓用插幀,因為它可能增加端到端延遲。 策略: 當渲染幀率穩定接近刷新率時,減少插幀介入。 當渲染幀率低且

幀率 , c++ , 後端開發 , c

wx65950818d835e - 14: 基於卷積神經網絡(CNN)的超分算法

引言 卷積神經網絡(CNN)是深度學習中最成功的模型之一,廣泛應用於圖像分類、物體檢測等任務。隨着深度學習技術的發展,CNN在圖像超分辨率(SR)領域也取得了顯著進展。基於CNN的超分算法利用深度卷積網絡從低分辨率圖像中提取特徵,並通過層層卷積和反捲積層重建高分辨率圖像。本文將探討基於CNN的超分算法的原理、優勢和挑戰。 CNN在超分中的基本原理 CNN通過多層

卷積 , 圖像重建 , c++ , 後端開發 , 深度學習 , c

蒙奇D索隆 - 【操作系統】考研408操作系統核心考點精講:進程的五大狀態與轉換機制剖析​

(進程的狀態與轉換) 導讀 大家好,很高興又和大家見面啦!!! 在上一篇內容中,我們共同探討了進程的基本概念——進程作為操作系統中資源分配和獨立運行的基本單位,是理解系統如何實現多任務併發的關鍵。 進程並非是靜態不變的,它有着自己的“生命週期”,會在不同的狀態間動態轉換,以響應系統的調度和各類事件的發生。 理解這些狀態及其轉換規律,就如同掌握了進程活動的脈搏。接

yyds乾貨盤點 , 操作系統 , c++ , 後端開發 , 考研 , c , 408