近年來,利用生成式深度學習方法在新功能蛋白質設計方面取得了顯著進展。目前包括 RFdiffusion(RFD1)和 BindCraft 在內的大多數方法,均採用氨基酸殘基水平的蛋白質表示,已能夠成功設計蛋白質單體、組裝體以及蛋白質-蛋白質相互作用體系,但其分辨率仍不足以精確設計與非蛋白質組分(如小分子配體與核酸)發生特異性側鏈相互作用的結構。 RFdiffusion2(RFD2)雖然