支持向量機(Support Vector Machine,簡稱 SVM)是一種強大的監督學習算法,主要用於分類和迴歸任務,在分類中尤為常見。SVM 的核心思想是找到一個最優的超平面,將不同類別的數據儘可能分開 一、基本概念 1.支持向量機(SVM)定義 SVM 是一種基於最大間隔的分類方法,通過尋找使不同類別數據之間間隔最大的超平面來實現分類。
你是否在為大型語言模型的量化推理速度發愁?GPTQ項目通過高效的CUDA核函數實現,將Transformer模型的量化推理速度提升數倍。本文將帶你深入瞭解GPTQ的CUDA內核開發全流程,從底層核函數實現到Python接口綁定,讓你掌握高性能量化推理的關鍵技術。讀完本文,你將能夠:理解GPTQ量化核函數的工作原理、掌握CUDA代碼到Python綁定的完整構建流程、學會如何
在過去二十餘年中,支持向量機(Support Vector Machine, SVM)一直是統計學習與模式識別領域的重要工具。其理論基礎源自結構風險最小化原則,結合幾何間隔最大化的優化目標,使得SVM在有限樣本條件下表現出優異的泛化能力。在文本分類、圖像識別、生物信息學等多種任務中,SVM憑藉穩健的訓練性質和嚴格的數學可解釋性,曾成為學術研究和工業應用的首選方法。 然而,隨
2.2、核函數Kernel 2.2.1、特徵空間的隱式映射:核函數 咱們首先給出核函數的來頭:在上文中,我們已經瞭解到了SVM處理線性可分的情況,而對於非線性的情況,SVM 的處理方法是選擇一個核函數 κ(⋅,⋅) ,通過將數據映射到高維空間,來解決在原始空間中線性不可分的問題。 此外,因為訓練樣例一般是不會獨立出現的,