博客 / 列表

Coding茶水間 - 基於深度學習的遙感地面物體檢測系統演示與介紹(YOLOv12/v11/v8/v5模型+Pyqt5界面+訓練代碼+數據集)

視頻演示 基於深度學習的遙感地面物體檢測系統 1. 前言​ 遙感地面物體檢測在城市規劃、交通監控、環境監測及農業管理等領域具有重要應用價值。傳統基於人工解譯或經典圖像處理的方法,面對高分辨率遙感影像中目標尺度多變、背景複雜、分佈密集等挑戰,往往存在效率低、漏檢率高、定位精度受限等問題。近年來,以 YOLO​ 系列為代表的單階段目標檢測算法,憑藉端到端推理、較高檢測速度與優良的多尺度特徵學習能力,在

AI

Coding茶水間 - 基於深度學習的船舶檢測系統演示與介紹(YOLOv12/v11/v8/v5模型+Pyqt5界面+訓練代碼+數據集)

視頻演示 基於深度學習的船舶檢測系統演示與介紹 1. 前言 海上場景的船舶檢測對海事安全與航運管理具有重要意義。傳統方法在複雜海況、密集目標與小目標場景下存在魯棒性不足、效率偏低等問題。近年來,YOLO系列單階段檢測器憑藉端到端推理與良好實時性,成為船舶檢測的主流方案。 本文實現並評估一套基於 YOLO 的船舶檢測系統,集成YOLOv5、YOLOv8、YOLOv11、YOLOv12,在同一界面實現

AI

Coding茶水間 - 基於深度學習的35種鳥類檢測系統演示與介紹(YOLOv12/v11/v8/v5模型+Pyqt5界面+訓練代碼+數據集)

視頻演示 基於深度學習的35種鳥類測系統演示與介紹 1. 前言 在自然與科技深度交織的時代,我們對周遭生命的觀察與認知,正被算法悄然拓展邊界。鳥類作為生態系統中靈動的註腳,其多樣性與分佈狀態不僅是自然研究的課題,更牽動着無數觀鳥愛好者、生態保護者的目光。然而,傳統的人工觀測與識別方式,常受限於經驗門檻、效率瓶頸,難以應對複雜場景下的精準捕捉——當鏡頭掠過林梢、水面或城市綠地,那些轉瞬即逝的身影,如

AI

Coding茶水間 - 基於深度學習的石頭剪刀布手勢識別系統演示與介紹(YOLOv12/v11/v8/v5模型+Pyqt5界面+訓練代碼+數據集)

​ 視頻演示 基於深度學習的石頭剪刀布手勢識別系統演示與介紹_嗶哩嗶哩_bilibili 1.前言 隨着人機交互技術的快速發展和智能設備的廣泛應用,自然、直觀的手勢交互已成為提升用户體驗的重要方向。石頭剪刀布作為一種經典的手勢遊戲,其識別任務融合了計算機視覺與模式識別的核心技術,對實時性和準確性提出了雙重挑戰。高效的石頭剪刀布手勢識別系統不僅能為人機交互提供新穎的交互方式,還可

機器學習