收藏 / 列表

ERP老兵_冷溪虎山 - CLion 調參高手都在用的配置!續集:GoLand 飛昇後,C/C++ 開發 IDE 性能炸裂的秘密

🏆🏆為什麼別人的 CLion 運行 C/C++ 項目絲滑流暢,而你的卻頻繁卡頓、編譯轉圈? ✅秘密就藏在這個 clion.vmoptions文件裏! 作為 IDEA/PyCharm/WebStorm/GoLand 調優系列的續集⏬ 🏅我把我壓箱底的 ​CLion 性能調優參數表​ 分享出來——包含 ​JVM 堆內存優化、垃圾回收策略、CMake 構建加速​ 等關鍵設置; 💎還附上每項

jvm調優 , c++ , clion , c , jetbrains

Hankin_Liu收徒 - 手把手教你縮減 系統內存,性能測試/調優必備技能

在做軟件產品的性能測試時,有時需要限定系統的資源,比如CPU核數、內存大小、硬盤大小等,本文將要學習如何調整Linux服務器的可用內存大小。 查看當前系統的內存 通過以下命令可以查看當前系統的內存大小。 [root@ZX-B3775-16d292 ~]# free -h total used free shared buff/ca

性能測試 , 內存 , Linux

星辰大海 - 自制遊戲

!DOCTYPE html html lang="zh-CN" head meta charset="UTF-8" meta name="viewport" content="width=device-width, initial-scale=1.0" title幾何衝刺 - 隨機關卡/title style * { margin: 0; pad

chrome

mb65950ac695995 - 十三、PC 高刷新顯示與可變刷新率(VRR)下的插幀策略

在支持 120/144/240Hz 的顯示器上,插幀能顯著改善低幀率內容的體驗。與 VRR(G-Sync/FreeSync)配合,渲染與顯示的同步問題更復雜。插幀管線應與顯示時序協調,確保中間幀在合適的掃描時刻輸出。對於低延遲需求的競技遊戲,需謹慎啓用插幀,因為它可能增加端到端延遲。 策略: 當渲染幀率穩定接近刷新率時,減少插幀介入。 當渲染幀率低且

幀率 , c++ , 後端開發 , c

wx65950818d835e - 11: 變分自編碼器(VAE)在超分中的應用

引言 變分自編碼器(Variational Autoencoder,VAE)是一種生成模型,它通過優化潛在變量的分佈來學習數據的潛在結構。與傳統的自編碼器不同,VAE將輸入數據映射到一個概率分佈空間,而不是單一的點。這種機制使得VAE在生成任務中能夠提供更豐富的樣本生成能力。在圖像超分辨率(SR)任務中,VAE的生成能力可以幫助恢復圖像中的高頻細節,生成更加自然的高分辨率圖

編碼器 , 數據 , c++ , 後端開發 , c , 概率分佈

1412 - C++高併發異步定時器的實現

各位開發者好,久違的Workflow架構系列追更了~ 在C++高併發場景,定時功能的實現有三大難題:高效、精準、原子性。 除了定時任務隨時可能到期、而進程隨時可能要退出之外,最近Workflow甚至為定時任務增加了取消功能,導致任務可能被框架調起之前被用户取消,或者創建之後不想執行直接刪除等情況,而這些情況大部分來説都是由不同線程執行的,因此其中的併發處理可謂教科書級別! 那麼就和大家一起看看Wo

定時器 , workflow , c++ , 開源 , 異步

kedixa - Coke(二):便捷地發起Http請求

Coke項目Github主頁。 在這個時間點開發本項目,有以下幾點考慮 常用的編譯器對C++ 20的支持已經逐步完善,本項目依賴於GCC = 11或Clang = 15 常用的操作系統發行版支持了新編譯器,例如CentOS Stream 8、Ubuntu 22.04、Fedora 38等 C++ Workflow使用回調函數的方式組織異步任務,一部分習慣寫同步代碼的用户可能會對此感到困擾,

c++20 , 協程 , c++

hedzr - 談 C++17 裏的 FlyWeight 模式

回顧享元模式,考慮實作它的各種問題。 Prologue 略過 FlyWeight Pattern 理論 享元模式,是將複雜對象的相同的組成元素抽出並單獨維護的一種結構型設計模式。這些相同的組成元素被稱為共享元件,它們在一個單獨的容器中被唯一性地管理,而複雜對象只需持有到該唯一實例的參考,而無需重複創建這樣的相同的元素,從而能夠大幅度地削減內存佔用。 以字處理器為例,每個字符都具有獨立的、區別於其它

c++11 , 設計模式 , design-pattern , c++ , c++17

oioihoii - 深入解析進程間通信(IPC)及其應用場景

在計算機的世界裏,進程就像一個個獨立的“小王國”,它們擁有自己獨立的內存空間和資源。然而,一個複雜的應用往往需要多個進程協同工作,比如你的音樂播放器進程需要和系統音量控制進程通信,瀏覽器的一個標籤頁崩潰了也不能影響其他標籤頁。 那麼,這些“小王國”之間如何安全、高效地傳遞信息呢?答案就是進程間通信。 什麼是進程間通信? 進程間通信是指兩個或多個進程之間傳輸數據或信號的技術。由

數據 , 進程間通信 , c++ , 後端開發 , 信號量 , c

小康 - 傳統鏈表OUT了!侵入式鏈表讓Nginx、TCMalloc 性能飛躍的秘密武器

嘿,各位C++er們!我是小康。 👋 今天我要給大家揭秘一個讓無數程序員拍案叫絕的"黑科技"——侵入式鏈表! 你可能會問:不就是個鏈表嗎,有什麼神奇的? 別急,當你看完這篇文章,你會發現這個看似簡單的數據結構,竟然是Nginx、Linux內核、TCMalloc等頂級項目的性能秘密武器! 🤔 從一個"奇怪"的現象説起 先看一段讓人疑惑的代碼: // 這段代碼在幹什麼?為什麼要這樣寫? stati

c++ , c

輕口味 - 深入理解rtmp(二)之C++腳手架搭建

前面深入理解rtmp(1)之開發環境搭建中我們已經搭建好服務器,並且利用一些現成的工具可以推送直播流,播放直播流了.這篇文章我們開始搭建從零開發一套rtmp推流拉流sdk,對着協議實現,達到真正的"深入理解". 作為一個碼農,搬磚搬到一定高度就需要"腳手架"來支撐我們"夠得住".為了方面我們把rtmp推拉流sdk實現為一個PC上的命令行程序,當開發調試穩定後,我們可以快速的通過交叉編譯工具編譯到A

音視頻 , tcp-ip , c++ , rtmp

Plume岣七 - [STL]拒絕O(log N)!哈希表與unordered系列指南

數據結構的選型中,“高效查找與操作”始終是核心需求。當面對海量數據的插入、查詢場景時,基於紅黑樹實現的map/set雖能保證有序性,卻受限於O(log n)的時間複雜度,難以突破性能瓶頸。而哈希表及其衍生的unordered_map/unordered_set,憑藉“平均O(1)”的極致效率,成為解決這類問題的最優解之一。 為什麼哈希表能實現遠超紅黑樹的操作速度?unord

unordered_系列容器 , STL , 哈希衝突 , 哈希表 , c++ , 後端開發 , c

蒙奇D索隆 - 【操作系統】408核心考點深度解析|進程通信:三大機制(共享存儲/消息傳遞/管道)詳解與對比

(進程通信) 導讀 大家好,很高興又和大家見面啦!!! 在前面的內容中,我們一同探討了進程的“內心世界”:從進程作為程序執行實體的基本概念,到其動態變化的生命狀態,以及操作系統如何通過進程控制(如創建、切換、終止)來精準地調度這些“任務單元”。我們看到了每個進程都擁有獨立的內存空間,像一個戒備森嚴的私人辦公室,這保證了系統的穩定與安全。 然而,一個顯而易見的問題隨之

yyds乾貨盤點 , 操作系統 , c++ , 後端開發 , 考研 , c , 408