@pytorch

動態 列表
@u_15214399

基於華為開發者空間,實現RFM分析與CLTV預測的電商客户細分與營銷策略優化

本案例由開發者:天津師範大學協同育人項目–翟羽佳提供 最新案例動態,請查閲 《【案例共創】基於華為開發者空間,實現RFM分析與CLTV預測的電商客户細分與營銷策略優化》。小夥伴快來領取華為開發者空間進行實操吧! 一、概述 1. 案例介紹 隨着電子商務行業的競爭加劇,企業需要更加精細化的客户管理策略來提升客户忠誠度和營銷效率。根據最新的市場調研,電商行業平均

u_15214399 頭像

@u_15214399

昵稱 u_15214399

@deephub

從零實現3D Gaussian Splatting:完整渲染流程的PyTorch代碼詳解

3D Gaussian Splatting(3DGS)現在幾乎成了3D視覺領域的標配技術。NVIDIA把它整合進COSMOS,Meta的新款AR眼鏡可以直接在設備端跑3DGS做實時環境捕獲和渲染。這技術已經不只是停留在論文階段了,產品落地速度是相當快的。 所以這篇文章我們用PyTorch從頭實現最初那篇3DGS論文,代碼量控制在幾百行以內。雖然實現很簡潔但效果能達到SOTA水平。 需要説明的是,

deephub 頭像

@deephub

昵稱 deephub

@deephub

如果你的PyTorch優化器效果欠佳,試試這4種深度學習中的高級優化技術吧

在深度學習領域,優化器的選擇對模型性能至關重要。雖然PyTorch中的標準優化器如 SGD 、 Adam 和 AdamW 被廣泛應用,但它們並非在所有情況下都是最優選擇。本文將介紹四種高級優化技術,這些技術在某些任務中可能優於傳統方法,特別是在面對複雜優化問題時。 我們將探討以下算法: 序列最小二乘規劃(SLSQP) 粒子羣優化(PSO) 協方差矩陣自適應進化策略(CMA-ES) 模擬退

deephub 頭像

@deephub

昵稱 deephub

@deephub

使用PyTorch實現GPT-2直接偏好優化訓練:DPO方法改進及其與監督微調的效果對比

基於人類反饋的強化學習(RLHF)已成為大型語言模型(LLM)訓練流程中的關鍵環節,並持續獲得研究界的廣泛關注。 本文將探討RLHF技術,特別聚焦於直接偏好優化(Direct Preference Optimization, DPO)方法,並詳細闡述了一項實驗研究:通過DPO對GPT-2 124M模型進行調優,同時與傳統監督微調(Supervised Fine-tuning, SFT)方法進行對比

deephub 頭像

@deephub

昵稱 deephub

@deephub

TorchOptimizer:基於貝葉斯優化的PyTorch Lightning超參數調優框架

超參數優化是深度學習模型開發過程中的一個核心技術難點。合適的超參數組合能夠顯著提升模型性能,但優化過程往往需要消耗大量計算資源和時間。本文介紹TorchOptimizer,這是一個基於貝葉斯優化方法的超參數優化框架,專門用於優化PyTorch Lightning模型的超參數配置。 TorchOptimizer是一個集成了PyTorch Lightning框架和scikit-optimize貝葉斯

deephub 頭像

@deephub

昵稱 deephub