在前3期PhysicalAI詳解系列中,我們詳細解讀了數據採集、擴增、增強的全過程,以及導航模型(X-Mobility)微調訓練的全過程。 在本期,我們將針對更復雜的VLA模型(以GR00T-N1.5為例)進行微調,同樣需要經過人工演示、數據擴增、模仿學習、在環驗證這幾個步驟。 但是,相比前例中的BC-RNN和X-Mobility模型,GR00T-N1.5是一
隨着人工智能模型規模擴大和數據複雜度提升,整合多源異構數據實現多模態協同建模,已成為提升模型性能的核心路徑。高效的數據預處理體系需在保證數據質量與多樣性的前提下,突破大規模數據清洗、增強與合成的系統性技術瓶頸,以平衡訓練效能與成本控制。阿里雲人工智能平台PAI分佈式訓練PAI-DLC推出的一項全新任務類型DataJuiceronDLC,旨在為用户帶來開箱即用、高性能、穩定高效的數