tag MLOps

標籤
貢獻1
27
12:56 AM · Nov 21 ,2025

@MLOps / 博客 RSS 訂閱

yzy121403725 - gitlab+kubeflow+minio/oss對象存儲搭建MLOps

核心思路 我們將利用: • GitLab:作為代碼倉庫、CI/CD 流水線的編排者和觸發器。它負責監控代碼變更、運行自動化測試、構建鏡像並與 Kubeflow 交互。 • Kubeflow:作為運行在 Kubernetes 上的機器學習專用平台。它負責執行復雜的模型訓練(通過 Pipelines)和模型部署(通過 Serving)任務。 整個 MLOps

gitlab+kubeflow , MLOps , aigc , llama

收藏 評論

yzy121403725 - MLOps

1. 定義與本質 MLOps 是一套將機器學習模型從開發(實驗)落地到生產環境,並實現全生命週期自動化、可觀測、可追溯的工程實踐體系。 核心目標:解決 “模型訓練出來能用,但上線難、維護難、迭代慢” 的痛點(比如傳統 ML 流程中,數據科學家訓練的模型,運維人員難以部署,且上線後數據漂移、模型性能下降無法及時感知)。 與傳統運維的區別:傳統運維聚焦

數據 , MLOps , aigc , llama , ML

收藏 評論