tag 子圖

標籤
貢獻3
47
10:36 AM · Nov 25 ,2025

@子圖 / 博客 RSS 訂閱

mob64ca1404baa2 - 多路譜聚類算法 源碼

引入   聚類算法一般可以分為兩類: Compactness。代表的算法有 K-means,GMM 等。但這類算法只能處理凸集,為了處理非凸的樣本集,必須引⼊核技巧。 Connectivity。這類以 spectral clustering 為代表。   舉個例子,將下述數據採用聚類算法進行聚類,可以採用GMM 或 K-Means 的方

機器學習 , 子圖 , 切圖 , 權重 , 人工智能 , 多路譜聚類算法 源碼

收藏 評論

咚咚王哲 - 人工智能之數據分析 Matplotlib:第四章 圖形類型

人工智能之數據分析 Matplotlib 第四章 圖形類型 (文章目錄) 前言 Matplotlib 支持多種圖表類型。本文將詳細介紹 散點圖、柱形圖、餅圖、直方圖 以及其他常見圖表(如箱線圖、熱力圖、面積圖、3D 圖等)的繪製方法、參數説明和典型應用場景。 一、散點圖(Scatter Plot) 用途 顯示兩個變量之間的關係,

子圖 , yyds乾貨盤點 , 人工智能 , 數據分析 , 直方圖 , Python

收藏 評論

mob64ca14101b2f - Matplotlib 中文用户指南 3.5 密緻佈局指南

I 徹底解決Z軸標籤截斷問題(強制預留標籤空間) 用“釜底抽薪”的思路——直接給Z軸標籤單獨預留獨立空間,不用再微調邊距和位置,無論你的畫布尺寸、Matplotlib版本如何,都能100%完整顯示,以下是必生效的代碼: 最終最終完整代碼(標籤無任何截斷) import matplotlib.pyplot as plt import numpy as n

子圖 , 圖層 , 3d , Css , 前端開發 , HTML

收藏 評論

咚咚王哲 - 人工智能之數據分析 Matplotlib:第六章 知識總結

人工智能之數據分析 Matplotlib 第六章 知識總結 (文章目錄) 前言 本文對之前的關於matplotlib的知識進行系統性總結,便於知識梳理和歸納,為後續打好基礎,或者面試使用 一、核心架構 Matplotlib 採用 三層架構: Backend(後端) 負責圖形渲染和輸出(如 T

子圖 , yyds乾貨盤點 , 面向對象 , 人工智能 , 數據分析 , Python

收藏 評論