博客 / 詳情

返回

Kafka 業務日誌採集最佳實踐

簡介

Apache Kafka 是一個分佈式流處理平台,主要用於構建實時數據流管道和應用程序。在收集業務日誌的場景中,Kafka 可以作為一個消息中間件,用於接收、存儲和轉發大量的日誌數據。將 Kafka 與其他系統(如 Elasticsearch、Flume、Spark Streaming 等)集成,以提供更豐富的日誌處理和分析功能。本文提到的是和觀測雲集成,即通過觀測雲的採集器 Datakit 採集 Kafka 中的業務日誌,下面通過一些例子瞭解下觀測雲的快速集成效果。

實踐環境

前置條件

  • 註冊觀測雲

軟件和中間件

  • Kafka3.2.0
  • Datakit採集器
  • JDK 8

硬件

  • 雲服務器 CentOS7.9 64位 4vCPU,8GB 內存,100GB 雲盤一台。

接入方案

準備 Kafka 環境

安裝 Kafka

下載 3.2.0 版本,解壓即可使用。

wget https://archive.apache.org/dist/kafka/3.2.0/kafka_2.13-3.2.0.tgz

注:目前 Datakit 支持的 Kafka 版本有[version:0.8.2 ~ 3.2.0]

啓動 Zookeeper 服務

$ bin/zookeeper-server-start.sh config/zookeeper.properties

啓動 KafkaServer

$ bin/kafka-server-start.sh config/server.properties

創建 Topic

創建名為 testlog 的 Topic 。

$ bin/kafka-topics.sh --create --topic testlog --bootstrap-server localhost:9092

啓動 Producer

$ bin/kafka-console-producer.sh --topic testlog --bootstrap-server localhost:9092

安裝 DataKit

參考官網文檔安裝 DataKit 採集器

TOKEN 依據你的觀測雲工作空間來填寫
DK_DATAWAY=https://openway.guance.com?token=<TOKEN> bash -c "$(curl -L https://static.guance.com/datakit/install.sh)"

開啓 Kafka 採集器

進入 DataKit 安裝目錄下 (默認是 /usr/local/datakit/conf.d/ ) 的 conf.d/kafkamq 目錄,複製 kafkamq.conf.sample 並命名為 kafkamq.conf

類似如下:

-rwxr-xr-x 1 root root 2574 Apr 30 23:52 kafkamq.conf
-rwxr-xr-x 1 root root 2579 May  1 00:40 kafkamq.conf.sample

調製 kafka 採集器配置如下:

  • addrs = ["localhost:9092"],該文采集器 DataKit 和 Kafka 安裝到同一台操作系統中,localhost 即可。
  • kafka_version = "3.2.0",該文使用 Kafka 的版本。
  • [inputs.kafkamq.custom],刪除註釋符號“#”。
  • [inputs.kafkamq.custom.log_topic_map],刪除註釋符號“#”。
  • "testlog"="log.p",testlog 為 Topic 的名字,log.p 為觀測雲 Pipeline 可編程數據處理器的日誌字段提取規則配置。涉及的業務日誌和 log.p 的內容詳細見下面的《使用 Pipeline》。
# {"version": "1.28.1", "desc": "do NOT edit this line"}

[[inputs.kafkamq]]
  addrs = ["localhost:9092"]
  # your kafka version:0.8.2 ~ 3.2.0
  kafka_version = "3.2.0"
  group_id = "datakit-group"
  # consumer group partition assignment strategy (range, roundrobin, sticky)
  assignor = "roundrobin"

  ## rate limit.
  #limit_sec = 100
  ## sample
  # sampling_rate = 1.0

  ## kafka tls config
  # tls_enable = true
  # tls_security_protocol = "SASL_PLAINTEXT"
  # tls_sasl_mechanism = "PLAIN"
  # tls_sasl_plain_username = "user"
  # tls_sasl_plain_password = "pw"

  ## -1:Offset Newest, -2:Offset Oldest
  offsets=-1

  ## skywalking custom
  #[inputs.kafkamq.skywalking]
    ## Required!send to datakit skywalking input.
    #dk_endpoint="http://localhost:9529"
    #thread = 8 
    #topics = [
    #  "skywalking-metrics",
    #  "skywalking-profilings",
    #  "skywalking-segments",
    #  "skywalking-managements",
    #  "skywalking-meters",
    #  "skywalking-logging",
    #]
    #namespace = ""

  ## Jaeger from kafka. Please make sure your Datakit Jaeger collector is open !!!
  #[inputs.kafkamq.jaeger]
    ## Required! ipv6 is "[::1]:9529"
    #dk_endpoint="http://localhost:9529"
    #thread = 8 
    #source: agent,otel,others...
    #source = "agent"
    ## Required! topics
    #topics=["jaeger-spans","jaeger-my-spans"]

  ## user custom message with PL script.
  [inputs.kafkamq.custom]
    #spilt_json_body = true
    #thread = 8 
    ## spilt_topic_map determines whether to enable log splitting for specific topic based on the values in the spilt_topic_map[topic].
    #[inputs.kafkamq.custom.spilt_topic_map]
    #  "log_topic"=true
    #  "log01"=false
    [inputs.kafkamq.custom.log_topic_map]
      "testlog"="log.p"
    #  "log01"="log_01.p"
    #[inputs.kafkamq.custom.metric_topic_map]
    #  "metric_topic"="metric.p"
    #  "metric01"="rum_apm.p"
    #[inputs.kafkamq.custom.rum_topic_map]
    #  "rum_topic"="rum_01.p"
    #  "rum_02"="rum_02.p"

  #[inputs.kafkamq.remote_handle]
    ## Required!
    #endpoint="http://localhost:8080"
    ## Required! topics
    #topics=["spans","my-spans"]
    # send_message_count = 100
    # debug = false
    # is_response_point = true
    # header_check = false
  
  ## Receive and consume OTEL data from kafka.
  #[inputs.kafkamq.otel]
    #dk_endpoint="http://localhost:9529"
    #trace_api="/otel/v1/trace"
    #metric_api="/otel/v1/metric"
    #trace_topics=["trace1","trace2"]
    #metric_topics=["otel-metric","otel-metric1"]
    #thread = 8 

  ## todo: add other input-mq

注意:開啓或調整 DataKit 的配置,需重啓採集器(shell 下執行 datakit service -R)。

使用 Pipeline

log.p 規則內容

data = load_json(message)
protocol = data["protocol"]
response_code = data["response_code"]
set_tag(protocol,protocol)
set_tag(response_code,response_code)
group_between(response_code,[200,300],"info","status")
group_between(response_code,[400,499],"warning","status")
group_between(response_code,[500,599],"error","status")

time = data["start_time"]
set_tag(time,time)
default_time(time)

效果展示

發送業務日誌樣例

業務日誌樣例文件如下:

#info
{"protocol":"HTTP/1.1","upstream_local_address":"172.20.32.97:33878","response_flags":"-","istio_policy_status":null,"trace_id":"5532224c1013b9ad6da1efe88778dd64","authority":"server:1338","method":"PUT","response_code":204,"duration":83,"upstream_service_time":"83","user_agent":"Jakarta Commons-HttpClient/3.1","bytes_received":103,"downstream_local_address":"172.21.2.130:1338","start_time":"2024-05-01T00:37:11.230Z","upstream_transport_failure_reason":null,"requested_server_name":null,"bytes_sent":0,"route_name":"routes","x_forwarded_for":"10.0.0.69,10.23.0.31","upstream_cluster":"outbound|1338|svc.cluster.local","request_id":"80ac7d31-a598-4dc8-bb74-1850593f61e4","downstream_remote_address":"10.23.0.31:0","path":"/api/dimensions/items","upstream_host":"172.20.9.101:1338"}
#error
{"protocol":"HTTP/1.1","upstream_local_address":"172.20.32.97:33878","response_flags":"-","istio_policy_status":null,"trace_id":"5532224c1013b9ad6da1efe88778dd64","authority":"server:1338","method":"PUT","response_code":504,"duration":83,"upstream_service_time":"83","user_agent":"Jakarta Commons-HttpClient/3.1","bytes_received":103,"downstream_local_address":"172.21.2.130:1338","start_time":"2024-05-01T00:39:11.230Z","upstream_transport_failure_reason":null,"requested_server_name":null,"bytes_sent":0,"route_name":"routes","x_forwarded_for":"10.0.0.69,10.23.0.31","upstream_cluster":"outbound|1338|svc.cluster.local","request_id":"80ac7d31-a598-4dc8-bb74-1850593f61e4","downstream_remote_address":"10.23.0.31:0","path":"/api/dimensions/items","upstream_host":"172.20.9.101:1338"}
#warn
{"protocol":"HTTP/1.1","upstream_local_address":"172.20.32.97:33878","response_flags":"-","istio_policy_status":null,"trace_id":"5532224c1013b9ad6da1efe88778dd64","authority":"server:1338","method":"PUT","response_code":404,"duration":83,"upstream_service_time":"83","user_agent":"Jakarta Commons-HttpClient/3.1","bytes_received":103,"downstream_local_address":"172.21.2.130:1338","start_time":"2024-05-01T00:38:11.230Z","upstream_transport_failure_reason":null,"requested_server_name":null,"bytes_sent":0,"route_name":"routes","x_forwarded_for":"10.0.0.69,10.23.0.31","upstream_cluster":"outbound|1338|svc.cluster.local","request_id":"80ac7d31-a598-4dc8-bb74-1850593f61e4","downstream_remote_address":"10.23.0.31:0","path":"/api/dimensions/items","upstream_host":"172.20.9.101:1338"}

日誌發送命令

在 Producer 啓動後,分別發送如下三條日誌內容,三條日誌一條為 info 級別("response_code":204),另一條為 error 級別("response_code":504),最後一條為 warn 級別日誌("response_code":404)。

>{"protocol":"HTTP/1.1","upstream_local_address":"172.20.32.97:33878","response_flags":"-","istio_policy_status":null,"trace_id":"5532224c1013b9ad6da1efe88778dd64","authority":"server:1338","method":"PUT","response_code":204,"duration":83,"upstream_service_time":"83","user_agent":"Jakarta Commons-HttpClient/3.1","bytes_received":103,"downstream_local_address":"172.21.2.130:1338","start_time":"2024-04-30T08:47:11.230Z","upstream_transport_failure_reason":null,"requested_server_name":null,"bytes_sent":0,"route_name":"routes","x_forwarded_for":"10.0.0.69,10.23.0.31","upstream_cluster":"outbound|1338|svc.cluster.local","request_id":"80ac7d31-a598-4dc8-bb74-1850593f61e4","downstream_remote_address":"10.23.0.31:0","path":"/api/dimensions/items","upstream_host":"172.20.9.101:1338"}
>
>
>
>
>{"protocol":"HTTP/1.1","upstream_local_address":"172.20.32.97:33878","response_flags":"-","istio_policy_status":null,"trace_id":"5532224c1013b9ad6da1efe88778dd64","authority":"server:1338","method":"PUT","response_code":504,"duration":83,"upstream_service_time":"83","user_agent":"Jakarta Commons-HttpClient/3.1","bytes_received":103,"downstream_local_address":"172.21.2.130:1338","start_time":"2024-04-30T08:47:11.230Z","upstream_transport_failure_reason":null,"requested_server_name":null,"bytes_sent":0,"route_name":"routes","x_forwarded_for":"10.0.0.69,10.23.0.31","upstream_cluster":"outbound|1338|svc.cluster.local","request_id":"80ac7d31-a598-4dc8-bb74-1850593f61e4","downstream_remote_address":"10.23.0.31:0","path":"/api/dimensions/items","upstream_host":"172.20.9.101:1338"}
>
>
>
>{"protocol":"HTTP/1.1","upstream_local_address":"172.20.32.97:33878","response_flags":"-","istio_policy_status":null,"trace_id":"5532224c1013b9ad6da1efe88778dd64","authority":"server:1338","method":"PUT","response_code":404,"duration":83,"upstream_service_time":"83","user_agent":"Jakarta Commons-HttpClient/3.1","bytes_received":103,"downstream_local_address":"172.21.2.130:1338","start_time":"2024-04-30T08:47:11.230Z","upstream_transport_failure_reason":null,"requested_server_name":null,"bytes_sent":0,"route_name":"routes","x_forwarded_for":"10.0.0.69,10.23.0.31","upstream_cluster":"outbound|1338|svc.cluster.local","request_id":"80ac7d31-a598-4dc8-bb74-1850593f61e4","downstream_remote_address":"10.23.0.31:0","path":"/api/dimensions/items","upstream_host":"172.20.9.101:1338"}

通過 DataKit 採集到 Kafka 的三條業務日誌

圖片

使用 Pipeline 對業務日誌進行字段提取

下圖 protocol、response_code 以及 time 都是使用 Pipeline 提取後的效果。

圖片

user avatar
0 位用戶收藏了這個故事!

發佈 評論

Some HTML is okay.