博客 / 詳情

返回

doc-llm-autotest 基於大模型的文檔自動化測試平台:worker服務的可靠性增強

一、可靠性分析

從架構圖上,我們可以看出worker調用大模型服務過程中,會發生阻塞等待,如果此時worker異常容器掛掉了,那麼此次任務狀態會一直為processing,並且因為redis關聯task_id的消息已經被消費了,那麼這個任務就無法被識別出來重試。

基於這個場景分析,我們要補充巡檢服務,去定時重啓處於超時並且狀態為processing的任務,此時服務可以從mysql撈任務表,但考慮到性能等影響,我們選擇在redis構建新的processing隊列,存儲正在執行的task_id,構建processing_ts隊列存儲開始處理時間,巡檢服務訪問redis的processing隊列、processing_ts隊列來更新狀態異常的任務。

適配worker服務邏輯:設置原子操作保證worker取任務+放入processing不會被中斷。

image

 二、邏輯實現

1. doc_llm_test_worker補充原子操作將task從ready移動到processing,記錄開始執行的時間

TASK_QUEUE_READY_KEY = "docllm:queue:ready"
TASK_QUEUE_PROCESSING_KEY = "docllm:queue:processing"
TASK_PROCESSING_TS_KEY = "docllm:hash:processing_ts"

def worker_loop():
    """文檔檢查任務 worker 主循環"""
    logging.info("doc_llm_test_worker started, waiting for tasks...")
    while True:
        try:
            raw_item = redis_client.brpoplpush(TASK_QUEUE_READY_KEY, TASK_QUEUE_PROCESSING_KEY, timeout=10)
            if not raw_item:
                time.sleep(5)
                continue # 沒有任務,就繼續下一輪

            try:
                payload_str = raw_item.decode("utf-8")
                data = json.loads(payload_str)
                task_id = int(data["task_id"])
            except Exception as e:
                logging.exception(f"invalid processing queue item: {raw_item!r}")
                redis_client.lrem(TASK_QUEUE_PROCESSING_KEY, 1, raw_item)
                continue
            
            start_ts = int(time.time())
            redis_client.hset(TASK_PROCESSING_TS_KEY, task_id, start_ts)

            try:
                process_task(task_id)
            finally:
                redis_client.lrem(TASK_QUEUE_PROCESSING_KEY, 1, raw_item)
                redis_client.hdel(TASK_PROCESSING_TS_KEY, task_id)
        except Exception:
            logging.exception("unexpected error in worker loop, sleep 3s")
            time.sleep(3)

2.補充巡檢服務,定時重啓處於超時並且狀態為processing的任務,需要做到重新入隊 + 狀態恢復流程

設置參數 PROCESSING_TIMEOUT_SECONDS = 600

判斷邏輯:

now_ts - start_ts > PROCESSING_TIMEOUT_SECONDS

該任務視為:

  • worker 處理失敗(worker 崩了/卡死)

  • 需要重新 pending

  • 丟回 ready 隊列給新的 worker

適配task_service,提供給巡檢服務同步改數據庫任務狀態

def mark_task_processing(task_id: int) -> bool:
    """worker 剛拿到任務時調用:pending -> processing"""
    with get_session() as session:
        stmt = (
            update(TaskDocLLM).where(
                TaskDocLLM.task_id == task_id,
                TaskDocLLM.status == TaskStatus.pending
            ).values(
                status=TaskStatus.processing,
                processing_started_at=func.now()
            )
        )
        result = session.execute(stmt)
        session.commit()
        return result.rowcount == 1

def reclaim_task(task_id: int, timeout_dt) -> bool:
    """
    將超時的任務重新放回隊列
    :param timeout_dt: datetime對象,代表“必須早於此時間才會被恢復”
    """
    with get_session() as session:
        stmt = (
            update(TaskDocLLM).where(
                TaskDocLLM.task_id == task_id,
                TaskDocLLM.status == TaskStatus.processing,
                TaskDocLLM.processing_started_at < timeout_dt
            ).values(
                status=TaskStatus.pending,
                retry_count=TaskDocLLM.retry_count + 1,
                processing_started_at=None,
                result=None
            )
        )
        result = session.execute(stmt)
        session.commit()
        return result.rowcount == 1

新增巡檢函數reaper_loop,篩選超時任務,恢復狀態:

def reaper_loop():
    """巡檢 processing 隊列,恢復超時的任務"""
    logging.info("doc_llm_reaper started, interval=%ss, timeout=%ss", REAPER_INTERVAL_SECONDS, PROCESSING_TIMEOUT_SECONDS)
    while True:
        try:
            now_ts = int(time.time())
            timeout_border_ts = now_ts - PROCESSING_TIMEOUT_SECONDS
            timeout_threshold_dt = datetime.utcnow() - timedelta(seconds=PROCESSING_TIMEOUT_SECONDS)
            
            items = redis_client.lrange(TASK_QUEUE_PROCESSING_KEY, 0, -1)
            if not items:
                time.sleep(REAPER_INTERVAL_SECONDS)
                continue
            for raw in items:
                try:
                    payload_str = raw.decode("utf-8")
                    payload = json.loads(payload_str)
                    task_id = payload.get("task_id")
                    task_name = payload.get("task_name")
                except Exception:
                    redis_client.lrem(TASK_QUEUE_PROCESSING_KEY, 1, raw)
                    continue

                start_ts_raw = redis_client.hget(TASK_PROCESSING_TS_KEY, task_id)
                if start_ts_raw is None:
                    continue
                start_ts = int(start_ts_raw)
                if start_ts > timeout_border_ts:
                    continue
                logging.warning(f"doc_llm_reaper: task {task_id} seems stuck, start_ts={start_ts}, now_ts={now_ts}")

                ok = task_service.reclaim_task(task_id, timeout_threshold_dt)
                if not ok:
                    continue
                redis_client.lrem(TASK_QUEUE_PROCESSING_KEY, 1, raw)
                redis_client.hdel(TASK_PROCESSING_TS_KEY, task_id)

                new_payload = json.dumps(
                    {"task_id": task_id, "task_name": task_name}, ensure_ascii=False
                )
                redis_client.lpush(TASK_QUEUE_READY_KEY, new_payload)
                logging.info(f"doc_llm_reaper: task {task_id} reclaimed and requeued to READY")
        except Exception:
            logging.exception("unexpected error in reaper loop, sleep 3s")
        time.sleep(REAPER_INTERVAL_SECONDS)

在主進程之外,起一個線程循環跑巡檢:

def start_reaper_thread():
    reaper_thread = threading.Thread(target=reaper_loop, name="doc_llm_reaper", daemon=True)
    reaper_thread.start()
    return reaper_thread

if __name__ == "__main__":
    setup_logging()
    init_llm()
    start_reaper_thread()
    worker_loop()

 

user avatar
0 位用戶收藏了這個故事!

發佈 評論

Some HTML is okay.