BSDE(後向隨機微分方程)的歐拉算法實現。
BSDE在金融數學、隨機控制等領域有重要應用。
1. BSDE基本理論
BSDE的一般形式
BSDE通常表示為:
Y_t = ξ + ∫_t^T f(s, Y_s, Z_s) ds - ∫_t^T Z_s dW_s
其中:
Y_t是狀態過程Z_t是控制過程W_t是布朗運動ξ是終端條件f是生成器函數
2. 歐拉離散化格式
時間離散化
將時間區間 [0, T] 離散為:
0 = t_0 < t_1 < ... < t_N = T
步長:Δt = T/N
歐拉格式
前向-後向歐拉格式:
Y_N = ξ
Z_N = 0
對於 i = N-1, ..., 0:
Z_i = (1/Δt) E[Y_{i+1} ΔW_i | F_{t_i}]
Y_i = E[Y_{i+1} | F_{t_i}] + Δt f(t_i, Y_i, Z_i)
3. MATLAB實現
基本BSDE求解器
classdef BSDESolver < handle
% BSDE求解器 - 歐拉方法實現
properties
T % 終端時間
N % 時間步數
dt % 時間步長
M % 蒙特卡洛路徑數
d % 布朗運動維度
t_grid % 時間網格
end
methods
function obj = BSDESolver(T, N, M, d)
% 構造函數
obj.T = T;
obj.N = N;
obj.M = M;
obj.d = d;
obj.dt = T / N;
obj.t_grid = linspace(0, T, N+1);
end
function [Y, Z, paths] = solve(obj, f, phi, X0)
% 求解BSDE
% 輸入:
% f: 生成器函數 f(t, x, y, z)
% phi: 終端條件函數 phi(x)
% X0: 初始狀態
% 初始化
Y = zeros(obj.M, obj.N+1);
Z = zeros(obj.M, obj.d, obj.N+1);
X = zeros(obj.M, obj.N+1);
W = zeros(obj.M, obj.d, obj.N+1);
% 生成布朗運動路徑
X(:,1) = X0;
for i = 1:obj.N
dW = sqrt(obj.dt) * randn(obj.M, obj.d);
W(:,:,i+1) = W(:,:,i) + dW;
% 這裏可以添加前向過程的具體演化
X(:,i+1) = X(:,i) + dW; % 簡單布朗運動示例
end
% 設置終端條件
Y(:,end) = phi(X(:,end));
Z(:,:,end) = 0;
% 後向迭代
for i = obj.N:-1:1
% 計算條件期望
[E_Y, E_YZ] = obj.conditional_expectation(Y(:,i+1), W(:,:,i+1));
% 更新Z過程
dW = W(:,:,i+1) - W(:,:,i);
for j = 1:obj.d
Z(:,j,i) = E_YZ(:,j) / obj.dt;
end
% 更新Y過程(隱式歐拉)
Y_old = E_Y;
max_iter = 10;
tol = 1e-6;
for iter = 1:max_iter
Y_new = E_Y + obj.dt * f(obj.t_grid(i), X(:,i), Y_old, Z(:,:,i));
if max(abs(Y_new - Y_old)) < tol
break;
end
Y_old = Y_new;
end
Y(:,i) = Y_new;
end
paths.X = X;
paths.W = W;
end
function [E_Y, E_YZ] = conditional_expectation(obj, Y, W)
% 計算條件期望
% 使用最小二乘蒙特卡洛方法
E_Y = zeros(obj.M, 1);
E_YZ = zeros(obj.M, obj.d);
% 使用當前狀態作為基函數
basis = [ones(obj.M,1), W];
% 迴歸計算E[Y|F_t]
coeff_Y = (basis' * basis) \ (basis' * Y);
E_Y = basis * coeff_Y;
% 迴歸計算E[YΔW|F_t]
for j = 1:obj.d
Y_dW = Y .* W(:,j);
coeff_YZ = (basis' * basis) \ (basis' * Y_dW);
E_YZ(:,j) = basis * coeff_YZ;
end
end
end
end
具體的BSDE示例實現
function bsde_euler_demo()
% BSDE歐拉算法演示
%% 參數設置
T = 1.0; % 終端時間
N = 100; % 時間步數
M = 10000; % 蒙特卡洛路徑數
d = 1; % 布朗運動維度
X0 = 1.0; % 初始狀態
%% 創建求解器
solver = BSDESolver(T, N, M, d);
%% 示例1: 線性BSDE
fprintf('求解線性BSDE...\n');
[Y_lin, Z_lin, paths_lin] = solve_linear_bsde(solver, X0);
%% 示例2: 非線性BSDE
fprintf('求解非線性BSDE...\n');
[Y_nonlin, Z_nonlin, paths_nonlin] = solve_nonlinear_bsde(solver, X0);
%% 可視化結果
plot_bsde_results(Y_lin, Z_lin, Y_nonlin, Z_nonlin, paths_lin, paths_nonlin);
end
function [Y, Z, paths] = solve_linear_bsde(solver, X0)
% 線性BSDE示例
% dY_t = (aY_t + bZ_t) dt + Z_t dW_t
% Y_T = φ(X_T)
a = 0.1;
b = 0.2;
% 生成器函數
f = @(t, x, y, z) a * y + b * z;
% 終端條件
phi = @(x) x.^2; % Y_T = X_T^2
[Y, Z, paths] = solver.solve(f, phi, X0);
end
function [Y, Z, paths] = solve_nonlinear_bsde(solver, X0)
% 非線性BSDE示例
% dY_t = (Y_t^2 + Z_t^2) dt + Z_t dW_t
% Y_T = φ(X_T)
% 非線性生成器函數
f = @(t, x, y, z) y.^2 + z.^2;
% 終端條件
phi = @(x) sin(x); % Y_T = sin(X_T)
[Y, Z, paths] = solver.solve(f, phi, X0);
end
4. 改進的歐拉算法
帶有投影步的歐拉方法
classdef ProjectedBSDESolver < BSDESolver
% 帶投影的BSDE求解器
methods
function [Y, Z, paths] = solve_with_projection(obj, f, phi, X0, projection)
% 帶投影的BSDE求解
% projection: 投影函數
[Y, Z, paths] = solve@BSDESolver(obj, f, phi, X0);
% 應用投影
for i = 1:obj.N+1
Y(:,i) = projection(Y(:,i));
for j = 1:obj.d
Z(:,j,i) = projection(Z(:,j,i));
end
end
end
end
end
高階歐拉方法
classdef HighOrderBSDESolver < BSDESolver
% 高階BSDE求解器
methods
function [Y, Z, paths] = solve_high_order(obj, f, phi, X0)
% 高階歐拉方法
% 初始化
Y = zeros(obj.M, obj.N+1);
Z = zeros(obj.M, obj.d, obj.N+1);
X = zeros(obj.M, obj.N+1);
X(:,1) = X0;
% 生成路徑
for i = 1:obj.N
dW = sqrt(obj.dt) * randn(obj.M, obj.d);
X(:,i+1) = X(:,i) + dW;
end
% 終端條件
Y(:,end) = phi(X(:,end));
% 高階後向迭代
for i = obj.N:-1:1
% 預測步
[E_Y_pred, E_YZ_pred] = obj.high_order_expectation(Y(:,i+1), X(:,i));
% 校正步
Y_pred = E_Y_pred + obj.dt * f(obj.t_grid(i), X(:,i), E_Y_pred, E_YZ_pred/obj.dt);
[E_Y_corr, E_YZ_corr] = obj.high_order_expectation(Y_pred, X(:,i));
% 更新
for j = 1:obj.d
Z(:,j,i) = E_YZ_corr(:,j) / obj.dt;
end
Y(:,i) = 0.5 * (E_Y_pred + E_Y_corr) + obj.dt * f(obj.t_grid(i), X(:,i), Y_pred, Z(:,:,i));
end
paths.X = X;
end
function [E_Y, E_YZ] = high_order_expectation(obj, Y, X)
% 高階條件期望計算
% 使用多項式基函數
E_Y = zeros(obj.M, 1);
E_YZ = zeros(obj.M, obj.d);
% 高階基函數
basis = [ones(obj.M,1), X, X.^2, X.^3];
% 迴歸計算條件期望
coeff_Y = (basis' * basis) \ (basis' * Y);
E_Y = basis * coeff_Y;
% 為每個布朗運動維度計算
for j = 1:obj.d
Y_basis = Y .* basis(:,2); % 使用X作為權重
coeff_YZ = (basis' * basis) \ (basis' * Y_basis);
E_YZ(:,j) = basis * coeff_YZ;
end
end
end
end
5. 金融應用示例
歐式期權定價的BSDE
function black_scholes_bsde_demo()
% Black-Scholes模型的BSDE求解
T = 1.0;
N = 100;
M = 5000;
d = 1;
% 市場參數
S0 = 100; % 初始股價
K = 100; % 行權價
r = 0.05; % 無風險利率
sigma = 0.2; % 波動率
solver = BSDESolver(T, N, M, d);
% Black-Scholes生成器函數
f = @(t, s, y, z) -r * y + (r / (sigma * s)) * z;
% 看漲期權終端條件
phi = @(s) max(s - K, 0);
[Y, Z, paths] = solver.solve(f, phi, S0);
% 與解析解比較
[call_analytical, ~] = blsprice(S0, K, r, T, sigma);
call_bsde = mean(Y(:,1));
fprintf('BSDE方法期權價格: %.4f\n', call_bsde);
fprintf('解析解期權價格: %.4f\n', call_analytical);
fprintf('相對誤差: %.4f%%\n', abs(call_bsde - call_analytical)/call_analytical*100);
plot_option_results(Y, Z, paths, call_analytical);
end
function plot_option_results(Y, Z, paths, analytical_price)
% 繪製期權定價結果
figure('Position', [100, 100, 1200, 800]);
% 價格過程
subplot(2,2,1);
plot(paths.t_grid, Y(1:10,:)');
hold on;
plot(paths.t_grid, mean(Y), 'k-', 'LineWidth', 3);
title('期權價格過程 Y_t');
xlabel('時間');
ylabel('價格');
legend('樣本路徑', '平均值', 'Location', 'best');
% Delta對衝
subplot(2,2,2);
plot(paths.t_grid, squeeze(Z(1:10,1,:))');
hold on;
plot(paths.t_grid, mean(squeeze(Z(:,1,:))), 'k-', 'LineWidth', 3);
title('Delta對衝係數 Z_t');
xlabel('時間');
ylabel('Delta');
% 價格分佈
subplot(2,2,3);
histogram(Y(:,1), 50, 'Normalization', 'probability');
hold on;
line([analytical_price, analytical_price], ylim, 'Color', 'red', 'LineWidth', 2);
title('初始價格分佈');
xlabel('價格');
ylabel('概率密度');
legend('BSDE價格', '解析價格');
% 收斂性分析
subplot(2,2,4);
time_points = 1:size(Y,2);
mean_prices = mean(Y);
std_prices = std(Y);
plot(paths.t_grid, mean_prices, 'b-', 'LineWidth', 2);
hold on;
fill([paths.t_grid, fliplr(paths.t_grid)], ...
[mean_prices + std_prices, fliplr(mean_prices - std_prices)], ...
'b', 'FaceAlpha', 0.2, 'EdgeColor', 'none');
title('價格收斂過程');
xlabel('時間');
ylabel('價格');
end
6. 收斂性分析
function convergence_analysis()
% BSDE歐拉方法的收斂性分析
T = 1.0;
M = 10000;
d = 1;
X0 = 1.0;
% 不同時間步數
N_values = [25, 50, 100, 200, 400];
errors_Y = zeros(size(N_values));
errors_Z = zeros(size(N_values));
% 參考解(使用最精細的網格)
N_ref = 1000;
solver_ref = BSDESolver(T, N_ref, M, d);
f_ref = @(t, x, y, z) 0.1 * y + 0.2 * z;
phi_ref = @(x) x.^2;
[Y_ref, Z_ref, ~] = solver_ref.solve(f_ref, phi_ref, X0);
Y0_ref = mean(Y_ref(:,1));
Z0_ref = mean(Z_ref(:,1,1));
for i = 1:length(N_values)
N = N_values(i);
solver = BSDESolver(T, N, M, d);
[Y, Z, ~] = solver.solve(f_ref, phi_ref, X0);
Y0 = mean(Y(:,1));
Z0 = mean(Z(:,1,1));
errors_Y(i) = abs(Y0 - Y0_ref);
errors_Z(i) = abs(Z0 - Z0_ref);
fprintf('N = %d, Y0誤差 = %.6f, Z0誤差 = %.6f\n', ...
N, errors_Y(i), errors_Z(i));
end
% 繪製收斂圖
figure;
loglog(N_values, errors_Y, 'o-', 'LineWidth', 2, 'DisplayName', 'Y誤差');
hold on;
loglog(N_values, errors_Z, 's-', 'LineWidth', 2, 'DisplayName', 'Z誤差');
loglog(N_values, 1./N_values, '--', 'DisplayName', 'O(1/N)');
loglog(N_values, 1./sqrt(N_values), '--', 'DisplayName', 'O(1/√N)');
xlabel('時間步數 N');
ylabel('誤差');
title('BSDE歐拉方法收斂性');
legend('Location', 'best');
grid on;
end
7. 使用示例
% 基本使用示例
clear; clc; close all;
% 運行演示
bsde_euler_demo();
% 金融應用示例
black_scholes_bsde_demo();
% 收斂性分析
convergence_analysis();
% 自定義BSDE求解
T = 1.0; N = 100; M = 5000; d = 1; X0 = 1.0;
solver = BSDESolver(T, N, M, d);
% 定義自己的生成器和終端條件
my_f = @(t, x, y, z) -0.5 * y.^2 + z; % 非線性生成器
my_phi = @(x) exp(-0.1 * x.^2); % 終端條件
[Y, Z, paths] = solver.solve(my_f, my_phi, X0);
fprintf('初始值 Y0 = %.6f\n', mean(Y(:,1)));
參考代碼 解BSDE方程的歐拉算法 www.youwenfan.com/contentcnm/80343.html
算法特點總結
|
方法
|
收斂階
|
計算複雜度
|
適用場景
|
|
基本歐拉
|
O(Δt)
|
O(M×N)
|
一般BSDE
|
|
投影歐拉
|
O(Δt)
|
O(M×N)
|
帶約束問題
|
|
高階歐拉
|
O(Δt²)
|
O(M×N)
|
高精度需求
|
BSDE歐拉算法實現提供了:
- 基本歐拉方法
- 改進的高階方法
- 金融應用示例
- 收斂性分析
- 可視化工具