1. 項目依賴配置
首先在pom.xml中添加依賴:
xml
<dependencies>
<dependency>
<groupId>org.deeplearning4j</groupId>
<artifactId>deeplearning4j-core</artifactId>
<version>1.0.0-M2.1</version>
</dependency>
<dependency>
<groupId>org.nd4j</groupId>
<artifactId>nd4j-native-platform</artifactId>
<version>1.0.0-M2.1</version>
</dependency>
<dependency>
<groupId>org.datavec</groupId>
<artifactId>datavec-api</artifactId>
<version>1.0.0-M2.1</version>
</dependency>
</dependencies>
2. 數據預處理類
java
import org.datavec.api.records.reader.RecordReader;
import org.datavec.api.records.reader.impl.csv.CSVRecordReader;
import org.datavec.api.split.FileSplit;
import org.datavec.api.transform.TransformProcess;
import org.datavec.api.transform.schema.Schema;
import org.datavec.api.writable.Writable;
import org.datavec.local.transforms.LocalTransformExecutor;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.dataset.api.DataSetPreProcessor;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.INDArrayIndex;
import org.nd4j.linalg.indexing.NDArrayIndex;
import java.io.File;
import java.util.ArrayList;
import java.util.List;
public class EnergyDataPreprocessor {
private static final int NUM_HISTORICAL_TIMESTEPS = 24; // 使用過去24小時的數據
private static final int NUM_PREDICTION_TIMESTEPS = 6; // 預測未來6小時
public static List<DataSet> loadAndPreprocessData(String filePath) throws Exception {
// 讀取CSV數據
RecordReader recordReader = new CSVRecordReader(1, ','); // 跳過表頭
recordReader.initialize(new FileSplit(new File(filePath)));
List<List<Writable>> allData = new ArrayList<>();
while (recordReader.hasNext()) {
allData.add(recordReader.next());
}
// 定義數據模式
Schema schema = new Schema.Builder()
.addColumnDouble("timestamp") // 時間戳
.addColumnDouble("temperature") // 温度
.addColumnDouble("humidity") // 濕度
.addColumnDouble("wind_speed") // 風速
.addColumnDouble("solar_radiation") // 太陽輻射
.addColumnDouble("energy_output") // 能源輸出(目標變量)
.build();
// 數據轉換(歸一化)
TransformProcess transformProcess = new TransformProcess.Builder(schema)
.removeColumns("timestamp") // 移除時間戳列
.build();
List<List<Writable>> processedData = LocalTransformExecutor.execute(allData, transformProcess);
return createTimeSeriesDataSet(processedData);
}
private static List<DataSet> createTimeSeriesDataSet(List<List<Writable>> data) {
List<DataSet> dataSets = new ArrayList<>();
int totalSamples = data.size() - NUM_HISTORICAL_TIMESTEPS - NUM_PREDICTION_TIMESTEPS + 1;
for (int i = 0; i < totalSamples; i++) {
// 特徵數據(歷史數據)
INDArray features = Nd4j.create(new int[]{
1, // mini-batch大小
5, // 特徵數量(温度、濕度、風速、太陽輻射、能源輸出)
NUM_HISTORICAL_TIMESTEPS // 時間步長
});
// 標籤數據(未來預測)
INDArray labels = Nd4j.create(new int[]{
1,
1, // 只預測能源輸出
NUM_PREDICTION_TIMESTEPS
});
// 填充特徵數據
for (int j = 0; j < NUM_HISTORICAL_TIMESTEPS; j++) {
List<Writable> currentRow = data.get(i + j);
for (int k = 0; k < 5; k++) {
features.putScalar(new int[]{0, k, j}, currentRow.get(k).toDouble());
}
}
// 填充標籤數據
for (int j = 0; j < NUM_PREDICTION_TIMESTEPS; j++) {
List<Writable> futureRow = data.get(i + NUM_HISTORICAL_TIMESTEPS + j);
// 只取能源輸出作為預測目標
labels.putScalar(new int[]{0, 0, j}, futureRow.get(4).toDouble());
}
dataSets.add(new DataSet(features, labels));
}
return dataSets;
}
}
3. LSTM模型構建類
java
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.layers.LSTM;
import org.deeplearning4j.nn.conf.layers.RnnOutputLayer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.optimize.listeners.ScoreIterationListener;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.learning.config.Adam;
import org.nd4j.linalg.lossfunctions.LossFunctions;
public class LSTMModelBuilder {
public static MultiLayerNetwork buildLSTMModel(int numInputFeatures, int numOutputs) {
int lstmLayer1Size = 128;
int lstmLayer2Size = 64;
double learningRate = 0.001;
double l2 = 0.001;
MultiLayerConfiguration configuration = new NeuralNetConfiguration.Builder()
.seed(12345)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.updater(new Adam(learningRate))
.l2(l2)
.list()
.layer(0, new LSTM.Builder()
.nIn(numInputFeatures)
.nOut(lstmLayer1Size)
.activation(Activation.TANH)
.weightInit(WeightInit.XAVIER)
.build())
.layer(1, new LSTM.Builder()
.nIn(lstmLayer1Size)
.nOut(lstmLayer2Size)
.activation(Activation.TANH)
.weightInit(WeightInit.XAVIER)
.build())
.layer(2, new RnnOutputLayer.Builder(LossFunctions.LossFunction.MSE)
.activation(Activation.IDENTITY)
.weightInit(WeightInit.XAVIER)
.nIn(lstmLayer2Size)
.nOut(numOutputs)
.build())
.build();
MultiLayerNetwork model = new MultiLayerNetwork(configuration);
model.init();
model.setListeners(new ScoreIterationListener(100));
return model;
}
}
4. 模型訓練和評估類
java
import org.deeplearning4j.earlystopping.EarlyStoppingConfiguration;
import org.deeplearning4j.earlystopping.EarlyStoppingResult;
import org.deeplearning4j.earlystopping.saver.LocalFileModelSaver;
import org.deeplearning4j.earlystopping.termination.MaxEpochsTerminationCondition;
import org.deeplearning4j.earlystopping.termination.MaxTimeTerminationCondition;
import org.deeplearning4j.earlystopping.trainer.EarlyStoppingTrainer;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.dataset.api.iterator.impl.ListDataSetIterator;
import org.nd4j.evaluation.regression.RegressionEvaluation;
import java.util.List;
import java.util.concurrent.TimeUnit;
public class EnergyPredictorTrainer {
public static void trainAndEvaluate(String dataPath) throws Exception {
// 加載和預處理數據
List<DataSet> allData = EnergyDataPreprocessor.loadAndPreprocessData(dataPath);
// 分割訓練集和測試集
int trainSize = (int) (allData.size() * 0.8);
List<DataSet> trainData = allData.subList(0, trainSize);
List<DataSet> testData = allData.subList(trainSize, allData.size());
// 創建迭代器
ListDataSetIterator trainIterator = new ListDataSetIterator(trainData, 32);
ListDataSetIterator testIterator = new ListDataSetIterator(testData, 32);
// 構建模型
MultiLayerNetwork model = LSTMModelBuilder.buildLSTMModel(5, 1); // 5個輸入特徵,1個輸出
// 配置早停
EarlyStoppingConfiguration<MultiLayerNetwork> esConfig =
new EarlyStoppingConfiguration.Builder<MultiLayerNetwork>()
.epochTerminationConditions(new MaxEpochsTerminationCondition(100))
.iterationTerminationConditions(
new MaxTimeTerminationCondition(30, TimeUnit.MINUTES))
.scoreCalculator(new org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculator(testIterator, true))
.evaluateEveryNEpochs(1)
.modelSaver(new LocalFileModelSaver("models/"))
.build();
EarlyStoppingTrainer trainer = new EarlyStoppingTrainer(
esConfig, model, trainIterator, testIterator);
// 開始訓練
EarlyStoppingResult<MultiLayerNetwork> result = trainer.fit();
System.out.println("訓練完成!最佳模型epoch: " + result.getBestModelEpoch());
// 加載最佳模型
MultiLayerNetwork bestModel = result.getBestModel();
// 評估模型
evaluateModel(bestModel, testIterator);
// 保存模型
bestModel.save(new File("models/best_energy_model.zip"), true);
}
private static void evaluateModel(MultiLayerNetwork model, DataSetIterator testIterator) {
RegressionEvaluation evaluation = new RegressionEvaluation();
testIterator.reset();
while (testIterator.hasNext()) {
DataSet batch = testIterator.next();
INDArray features = batch.getFeatures();
INDArray labels = batch.getLabels();
INDArray predictions = model.output(features, false);
evaluation.eval(labels, predictions);
}
System.out.println("模型評估結果:");
System.out.println(evaluation.stats());
}
}
5. 預測類
java
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import java.util.List;
public class EnergyPredictor {
private MultiLayerNetwork model;
public EnergyPredictor(MultiLayerNetwork model) {
this.model = model;
}
public INDArray predictFutureEnergy(INDArray historicalData) {
// historicalData 形狀: [1, 特徵數, 時間步長]
return model.output(historicalData, false);
}
public static void main(String[] args) throws Exception {
// 加載訓練好的模型
MultiLayerNetwork model = MultiLayerNetwork.load(
new File("models/best_energy_model.zip"), true);
EnergyPredictor predictor = new EnergyPredictor(model);
// 示例:使用最新數據預測未來能源輸出
// 這裏需要準備實際的歷史數據
INDArray sampleData = Nd4j.create(new int[]{1, 5, 24}); // batch=1, 特徵=5, 時間步=24
// 填充實際數據...
INDArray prediction = predictor.predictFutureEnergy(sampleData);
System.out.println("未來能源輸出預測: " + prediction);
}
}
6. 主程序入口
java
public class RenewableEnergyForecasting {
public static void main(String[] args) {
try {
String dataPath = "data/energy_data.csv"; // 您的數據文件路徑
System.out.println("開始訓練新能源預測模型...");
EnergyPredictorTrainer.trainAndEvaluate(dataPath);
System.out.println("模型訓練完成!");
} catch (Exception e) {
e.printStackTrace();
}
}
}
https://rd.xjyl.gov.cn/upload/1981375792641703936.html
https://rd.xjyl.gov.cn/upload/1981375793530896384.html
https://rd.xjyl.gov.cn/upload/1981375796278165504.html
https://rd.xjyl.gov.cn/upload/1981375797129609216.html
https://rd.xjyl.gov.cn/upload/1981375803794358272.html
https://rd.xjyl.gov.cn/upload/1981375804574498816.html
https://rd.xjyl.gov.cn/upload/1981375804817768448.html
https://rd.xjyl.gov.cn/upload/1981375805056843776.html
https://rd.xjyl.gov.cn/upload/1981375805606297600.html
https://rd.xjyl.gov.cn/upload/1981375806029922304.html
關鍵特性説明
- 數據預處理:
- 處理時間序列數據
- 歸一化特徵值
- 創建滑動窗口數據集
- LSTM網絡結構:
- 兩層LSTM網絡
- 使用tanh激活函數
- 全連接輸出層
- 訓練優化:
- 使用Adam優化器
- 早停機制防止過擬合
- L2正則化
- 模型評估:
- 迴歸評估指標
- 訓練/測試集分割
- 模型性能監控
這個框架可以用於預測太陽能、風能等新能源的輸出,您需要根據實際數據調整特徵工程和模型參數。
本文章為轉載內容,我們尊重原作者對文章享有的著作權。如有內容錯誤或侵權問題,歡迎原作者聯繫我們進行內容更正或刪除文章。