基於遺傳算法的經濟負荷分配是電力系統中優化發電資源分配的經典問題。

問題概述

經濟負荷分配的目標是在滿足電力需求和各發電機約束條件下,最小化總髮電成本,同時實現負荷在各發電機間的優化分配。

【有序充電】基於遺傳算法求解峯谷分時電價引導下的電動汽車充電負荷優化問題附matlab代碼_最小化

數學模型

1. 目標函數

總髮電成本最小化

Minimize F_total = Σ F_i(P_i)  (i=1,2,...,N)

其中發電機成本函數通常為二次函數:

F_i(P_i) = a_i × P_i² + b_i × P_i + c_i

2. 約束條件

  • 功率平衡約束Σ P_i = P_load + P_loss
  • 發電機出力限制P_i_min ≤ P_i ≤ P_i_max
  • 爬坡率約束(如考慮):|P_i(t) - P_i(t-1)| ≤ R_i

遺傳算法實現步驟

1. 染色體編碼

% 實數編碼 - 每個基因代表一台發電機的出力
function population = initialize_population(pop_size, n_gen, P_min, P_max)
    population = zeros(pop_size, n_gen);
    for i = 1:pop_size
        % 在約束範圍內隨機生成個體
        population(i,:) = P_min + rand(1, n_gen) .* (P_max - P_min);
    end
end

2. 適應度函數

function fitness = calculate_fitness(individual, a, b, c, P_load, penalty_factor)
    % 計算總成本
    total_cost = 0;
    for i = 1:length(individual)
        P_i = individual(i);
        total_cost = total_cost + a(i)*P_i^2 + b(i)*P_i + c(i);
    end
    
    % 功率平衡約束懲罰
    total_power = sum(individual);
    power_imbalance = abs(total_power - P_load);
    
    % 適應度值(最小化問題取倒數)
    fitness = 1 / (total_cost + penalty_factor * power_imbalance^2);
end

3. 選擇操作

function parents = selection(population, fitness, method='roulette')
    pop_size = size(population, 1);
    
    switch method
        case 'roulette'
            % 輪盤賭選擇
            prob = fitness / sum(fitness);
            cum_prob = cumsum(prob);
            parents = zeros(size(population));
            
            for i = 1:pop_size
                r = rand();
                idx = find(cum_prob >= r, 1);
                parents(i,:) = population(idx,:);
            end
            
        case 'tournament'
            % 錦標賽選擇
            tournament_size = 2;
            parents = zeros(size(population));
            
            for i = 1:pop_size
                contestants = randperm(pop_size, tournament_size);
                [~, best_idx] = max(fitness(contestants));
                parents(i,:) = population(contestants(best_idx),:);
            end
    end
end

4. 交叉操作

function offspring = crossover(parents, crossover_rate)
    pop_size = size(parents, 1);
    n_gen = size(parents, 2);
    offspring = parents;
    
    for i = 1:2:pop_size-1
        if rand() < crossover_rate
            % 算術交叉
            alpha = rand();
            offspring(i,:) = alpha * parents(i,:) + (1-alpha) * parents(i+1,:);
            offspring(i+1,:) = alpha * parents(i+1,:) + (1-alpha) * parents(i,:);
        end
    end
end

5. 變異操作

function mutated_pop = mutation(population, mutation_rate, P_min, P_max)
    pop_size = size(population, 1);
    n_gen = size(population, 2);
    mutated_pop = population;
    
    for i = 1:pop_size
        for j = 1:n_gen
            if rand() < mutation_rate
                % 高斯變異
                mutated_pop(i,j) = population(i,j) + randn() * 0.1 * (P_max(j)-P_min(j));
                % 邊界處理
                mutated_pop(i,j) = max(P_min(j), min(P_max(j), mutated_pop(i,j)));
            end
        end
    end
end

完整MATLAB實現

function [best_solution, best_cost, convergence] = GA_economic_dispatch()
    % 參數設置
    pop_size = 50;          % 種羣大小
    max_gen = 200;          % 最大迭代次數
    crossover_rate = 0.8;   % 交叉概率
    mutation_rate = 0.1;    % 變異概率
    penalty_factor = 1000;  % 懲罰因子
    
    % 發電機參數 (a, b, c, P_min, P_max)
    % 示例:3台發電機
    a = [0.0056, 0.0050, 0.0048];
    b = [4.5, 4.0, 3.8];
    c = [100, 120, 110];
    P_min = [50, 50, 50];
    P_max = [200, 200, 200];
    
    P_load = 400;  % 總負荷需求
    n_gen = length(a);
    
    % 初始化種羣
    population = initialize_population(pop_size, n_gen, P_min, P_max);
    
    % 記錄收斂過程
    convergence = zeros(max_gen, 1);
    
    for gen = 1:max_gen
        % 計算適應度
        fitness = zeros(pop_size, 1);
        for i = 1:pop_size
            fitness(i) = calculate_fitness(population(i,:), a, b, c, P_load, penalty_factor);
        end
        
        % 記錄最佳解
        [best_fit, best_idx] = max(fitness);
        convergence(gen) = 1/best_fit;  % 轉換為成本
        
        % 選擇
        parents = selection(population, fitness, 'tournament');
        
        % 交叉
        offspring = crossover(parents, crossover_rate);
        
        % 變異
        mutated_pop = mutation(offspring, mutation_rate, P_min, P_max);
        
        % 精英保留
        population = mutated_pop;
        population(1,:) = parents(best_idx,:);
    end
    
    % 提取最優解
    best_solution = population(best_idx,:);
    best_cost = convergence(end);
    
    % 顯示結果
    display_results(best_solution, best_cost, a, b, c);
end

function display_results(solution, cost, a, b, c)
    fprintf('最優負荷分配結果:\n');
    for i = 1:length(solution)
        P_i = solution(i);
        cost_i = a(i)*P_i^2 + b(i)*P_i + c(i);
        fprintf('發電機%d: %.2f MW, 成本: %.2f $\n', i, P_i, cost_i);
    end
    fprintf('總成本: %.2f $\n', cost);
    fprintf('總髮電量: %.2f MW\n', sum(solution));
end

高級改進策略

1. 考慮網損的經濟調度

% B係數法計算網損
function P_loss = calculate_losses(P, B_coeff)
    P_loss = P * B_coeff * P';
end

% 修改適應度函數考慮網損
function fitness = calculate_fitness_with_loss(individual, a, b, c, P_load, B_coeff, penalty_factor)
    total_cost = sum(a.*individual.^2 + b.*individual + c);
    total_power = sum(individual);
    P_loss = calculate_losses(individual, B_coeff);
    power_imbalance = abs(total_power - P_loss - P_load);
    
    fitness = 1 / (total_cost + penalty_factor * power_imbalance^2);
end

2. 閥點效應考慮

% 考慮閥點效應的成本函數
function cost = valve_point_cost(P, a, b, c, e, f)
    % e, f 為閥點效應係數
    cost = a*P^2 + b*P + c + abs(e * sin(f * (P_min - P)));
end

性能優化建議

  1. 參數調優
  • 種羣大小:50-100
  • 交叉概率:0.7-0.9
  • 變異概率:0.01-0.1
  1. 收斂準則
  • 最大迭代次數
  • 適應度改善閾值
  • 早停策略
  1. 混合算法
  • GA + 局部搜索
  • GA + 模擬退火
  • 多目標優化擴展

實際應用考慮

  • 備用容量約束
  • 禁止運行區間
  • 最小啓停時間
  • 燃料約束
  • 排放約束(多目標優化)