博客 / 詳情

返回

大語言模型~Ollama本地模型和java一起體驗LLM

説明

  • 用户輸入多個“信息”
  • 大語言模型將“信息”進行處理,轉成數組;(一維張量,向量)
  • 通過餘弦相似度等相關算法,計算兩個向量是否相似

Ollama接口步驟

  1. 安裝 Ollama: https://ollama.ai/
  2. 下載模型: ollama pull nomic-embed-text
  3. Ollama 默認運行在 http://localhost:11434

推薦的嵌入模型:

  • nomic-embed-text: 768維,效果好,速度快
  • mxbai-embed-large: 1024維,效果更好
  • bge-m3: 多語言支持

圖片

springboot中調用本地模型

    @Test
	@Disabled("需要本地運行 Ollama 服務")
	public void testOllamaEmbedding() {
		// Ollama API 地址
		String apiUrl = "http://localhost:11434/api/embeddings";
		String apiKey = ""; // Ollama 本地不需要 key
		String model = "nomic-embed-text"; // 或 mxbai-embed-large

		EmbeddingClient client = new EmbeddingClientImpl(apiUrl, apiKey);

		// 水果庫
		List<Fruit> fruits = Arrays.asList(new Fruit("紅富士蘋果", "紅色 甜 脆 蘋果 新鮮"), new Fruit("青蘋果", "綠色 酸 脆 蘋果 清爽"),
				new Fruit("金帥蘋果", "黃色 甜 軟 蘋果"), new Fruit("香蕉", "黃色 甜 軟 香蕉 熱帶水果"), new Fruit("草莓", "紅色 甜 小 草莓 多汁 漿果"),
				new Fruit("西瓜", "綠色外皮 紅色果肉 甜 大 西瓜 多汁 夏天"), new Fruit("葡萄", "紫色 甜 小 葡萄 多汁 成串"));

		// 為每個水果生成嵌入向量
		for (Fruit fruit : fruits) {
			fruit.embedding = client.getEmbeddingVector(model, fruit.description);
		}

		// 用户搜索
		String query = "紅色的甜水果";
		double[] queryVector = client.getEmbeddingVector(model, query);

		System.out.println("搜索: \"" + query + "\"");
		System.out.println("向量維度: " + queryVector.length);
		System.out.println();

		// 按相似度排序
		fruits.sort(Comparator.comparingDouble(f -> -cosineSimilarity(queryVector, f.embedding)));

		// 輸出結果
		System.out.println("搜索結果(按相似度排序):");
		for (Fruit f : fruits) {
			double sim = cosineSimilarity(queryVector, f.embedding);
			System.out.printf("  %s (%.4f): %s%n", f.name, sim, f.description);
		}
	}

    /**
	 * 計算兩個向量的餘弦相似度
	 */
	public static double cosineSimilarity(double[] vectorA, double[] vectorB) {
		if (vectorA.length != vectorB.length) {
			throw new IllegalArgumentException("向量維度必須相同");
		}

		double dotProduct = 0;
		double normA = 0;
		double normB = 0;

		for (int i = 0; i < vectorA.length; i++) {
			dotProduct += vectorA[i] * vectorB[i];
			normA += vectorA[i] * vectorA[i];
			normB += vectorB[i] * vectorB[i];
		}

		if (normA == 0 || normB == 0) {
			return 0;
		}

		return dotProduct / (Math.sqrt(normA) * Math.sqrt(normB));
	}

核心方法

@Slf4j
public class EmbeddingClientImpl implements EmbeddingClient {

	private final RestTemplate restTemplate;

	private final String address;

	private final String key;

	public EmbeddingClientImpl(String address, String key) {
		PoolingHttpClientConnectionManager connectionManager = new PoolingHttpClientConnectionManager();
		connectionManager.setMaxTotal(100);
		connectionManager.setDefaultMaxPerRoute(20);

		// 設置請求配置
		RequestConfig requestConfig = RequestConfig.custom()
				.setConnectionRequestTimeout(Timeout.ofSeconds(30))
				.setResponseTimeout(Timeout.ofSeconds(300)) // 5分鐘響應超時
				.build();

		// 使用 HttpClientBuilder 來構建 HttpClient
		HttpClient httpClient = HttpClientBuilder.create()
				.setConnectionManager(connectionManager)
				.setDefaultRequestConfig(requestConfig)
				.build();

		// 創建 HttpComponentsClientHttpRequestFactory
		HttpComponentsClientHttpRequestFactory requestFactory = new HttpComponentsClientHttpRequestFactory(httpClient);
		requestFactory.setConnectTimeout(30000); // 30秒連接超時
		requestFactory.setConnectionRequestTimeout(30000);

		// 創建 RestTemplate,只使用 StringHttpMessageConverter 避免 Jackson 依賴問題
		this.restTemplate = new RestTemplate(requestFactory);
		// 清除默認的消息轉換器,只保留字符串轉換器
		this.restTemplate.setMessageConverters(
				Collections.singletonList(new StringHttpMessageConverter(StandardCharsets.UTF_8)));

		this.address = address;
		this.key = key;
	}

	@Override
	public String embedding(String model, String input) {
		long start = System.currentTimeMillis();
		String url = address;

		HttpHeaders headers = new HttpHeaders();
		headers.setContentType(MediaType.APPLICATION_JSON);
		headers.setAcceptCharset(Collections.singletonList(StandardCharsets.UTF_8));
		if (key != null && !key.isEmpty()) {
			headers.add("Authorization", "Bearer " + key);
		}

		// 將 request 轉化為 body 字符串
		JSONObject jsonObject = new JSONObject();
		jsonObject.put("input", input);
		jsonObject.put("model", model);
		String body = jsonObject.toString();
		log.debug("Embedding Request Body: {}", body);

		// 請求
		HttpEntity<String> req = new HttpEntity<>(body, headers);

		ResponseEntity<String> result = restTemplate.postForEntity(url, req, String.class);

		if (!result.getStatusCode().equals(HttpStatus.OK)) {
			throw new RuntimeException("embeddings error, request: " + body + ", response: " + result.getBody());
		}
		log.info("embedding cost {} ms", System.currentTimeMillis() - start);
		return result.getBody();
	}

	/**
	 * 獲取文本嵌入向量
	 * <p>
	 * 解析 OpenAI 格式的響應,提取 embedding 向量
	 *
	 * 響應格式示例: <pre>
	 * {
	 *   "object": "list",
	 *   "data": [{
	 *     "object": "embedding",
	 *     "index": 0,
	 *     "embedding": [0.0023064255, -0.009327292, ...]
	 *   }],
	 *   "model": "text-embedding-ada-002",
	 *   "usage": {"prompt_tokens": 8, "total_tokens": 8}
	 * }
	 * </pre>
	 * @param model 模型名稱
	 * @param input 輸入文本
	 * @return 嵌入向量
	 */
	@Override
	public double[] getEmbeddingVector(String model, String input) {
		String response = embedding(model, input);
		return parseEmbeddingVector(response);
	}

	/**
	 * 解析嵌入向量響應
	 * @param response JSON響應字符串
	 * @return 向量數組
	 */
	private double[] parseEmbeddingVector(String response) {
		try {
			JSONObject jsonResponse = JSONObject.parseObject(response);

			// OpenAI 格式
			if (jsonResponse.containsKey("data")) {
				JSONArray dataArray = jsonResponse.getJSONArray("data");
				if (dataArray != null && !dataArray.isEmpty()) {
					JSONObject firstData = dataArray.getJSONObject(0);
					JSONArray embeddingArray = firstData.getJSONArray("embedding");
					return jsonArrayToDoubleArray(embeddingArray);
				}
			}

			// Ollama 格式 (直接返回 embedding 數組)
			if (jsonResponse.containsKey("embedding")) {
				JSONArray embeddingArray = jsonResponse.getJSONArray("embedding");
				return jsonArrayToDoubleArray(embeddingArray);
			}

			// 阿里通義格式
			if (jsonResponse.containsKey("output")) {
				JSONObject output = jsonResponse.getJSONObject("output");
				if (output.containsKey("embeddings")) {
					JSONArray embeddings = output.getJSONArray("embeddings");
					if (!embeddings.isEmpty()) {
						JSONObject firstEmbedding = embeddings.getJSONObject(0);
						JSONArray embeddingArray = firstEmbedding.getJSONArray("embedding");
						return jsonArrayToDoubleArray(embeddingArray);
					}
				}
			}

			throw new RuntimeException("無法解析嵌入向量響應: " + response);
		}
		catch (Exception e) {
			log.error("解析嵌入向量失敗: {}", response, e);
			throw new RuntimeException("解析嵌入向量失敗", e);
		}
	}

	/**
	 * 將 JSONArray 轉換為 double 數組
	 */
	private double[] jsonArrayToDoubleArray(JSONArray jsonArray) {
		double[] result = new double[jsonArray.size()];
		for (int i = 0; i < jsonArray.size(); i++) {
			result[i] = jsonArray.getDoubleValue(i);
		}
		return result;
	}

}

圖片

user avatar
0 位用戶收藏了這個故事!

發佈 評論

Some HTML is okay.