視頻演示
基於深度學習的香蕉成熟度檢測系統演示
1. 前言
隨着農業現代化的發展,水果品質在線檢測在採摘後分級與倉儲管理中具有重要意義。香蕉成熟度直接影響其口感與銷售價值,但人工檢測效率低、主觀性強,難以滿足規模化需求。
YOLO 系列算法檢測速度快、精度較高,已廣泛用於目標檢測。然而在香蕉成熟度檢測中,不同階段的外觀差異細微,且易受光照、背景等因素干擾,現有方法多侷限於簡單二分類,缺乏多類別細粒度檢測與完整應用平台的支撐。
為此,本文設計並實現了一套基於 YOLO 算法的香蕉成熟度檢測系統,可識別新鮮成熟、新鮮未熟、過熟、成熟腐爛、未熟五個類別,支持圖片、視頻、文件夾批量及攝像頭實時檢測。系統集成可視化界面、參數調節、語音播報、結果保存與導出、類別過濾、用户登錄管理,以及無界面腳本檢測和模型訓練功能,形成檢測—管理—訓練的全流程平台。
本系統的創新在於:實現多類別細粒度檢測、提供一體化易用平台、支持交互與擴展,併兼顧實時性與實用性,可直接應用於果園採收後檢測、倉儲分揀與品質監控等場景,為水果成熟度智能檢測提供可行方案。
2. 項目演示
2.1 用户登錄界面
登錄界面佈局簡潔清晰,左側展示系統主題,用户需輸入用户名、密碼及驗證碼完成身份驗證後登錄系統。

2.2 新用户註冊
註冊時可自定義用户名與密碼,支持上傳個人頭像;如未上傳,系統將自動使用默認頭像完成賬號創建。

2.3 主界面佈局
主界面採用三欄結構,左側為功能操作區,中間用於展示檢測畫面,右側呈現目標詳細信息,佈局合理,交互流暢。

2.4 個人信息管理
用户可在此模塊中修改密碼或更換頭像,個人信息支持隨時更新與保存。

2.5 多模態檢測展示
系統支持圖片、視頻及攝像頭實時畫面的目標檢測。識別結果將在畫面中標註顯示,並在下方列表中逐項列出。點擊具體目標可查看其類別、置信度及位置座標等詳細信息。

2.6 檢測結果保存
可以將檢測後的圖片、視頻進行保存,生成新的圖片和視頻,新生成的圖片和視頻中會帶有檢測結果的標註信息,並且還可以將所有檢測結果的數據信息保存到excel中進行,方便查看檢測結果。


2.7 多模型切換
系統內置多種已訓練模型,用户可根據實際需求靈活切換,以適應不同檢測場景或對比識別效果。

3.模型訓練核心代碼
本腳本是YOLO模型批量訓練工具,可自動修正數據集路徑為絕對路徑,從pretrained文件夾加載預訓練模型,按設定參數(100輪/640尺寸/批次8)一鍵批量訓練YOLOv5nu/v8n/v11n/v12n模型。
4. 技術棧
-
語言:Python 3.10
-
前端界面:PyQt5
-
數據庫:SQLite(存儲用户信息)
-
模型:YOLOv5、YOLOv8、YOLOv11、YOLOv12
5. YOLO模型對比與識別效果解析
5.1 YOLOv5/YOLOv8/YOLOv11/YOLOv12模型對比
基於Ultralytics官方COCO數據集訓練結果:
|
模型 |
尺寸(像素) |
mAPval 50-95 |
速度(CPU ONNX/毫秒) |
參數(M) |
FLOPs(B) |
|---|---|---|---|---|---|
|
YOLO12n |
640 |
40.6 |
- |
2.6 |
6.5 |
|
YOLO11n |
640 |
39.5 |
56.1 ± 0.8 |
2.6 |
6.5 |
|
YOLOv8n |
640 |
37.3 |
80.4 |
3.2 |
8.7 |
|
YOLOv5nu |
640 |
34.3 |
73.6 |
2.6 |
7.7 |
關鍵結論:
-
精度最高:YOLO12n(mAP 40.6%),顯著領先其他模型(較YOLOv5nu高約6.3個百分點);
-
速度最優:YOLO11n(CPU推理56.1ms),比YOLOv8n快42%,適合實時輕量部署;
-
效率均衡:YOLO12n/YOLO11n/YOLOv8n/YOLOv5nu參數量均為2.6M,FLOPs較低(YOLO12n/11n僅6.5B);YOLOv8n參數量(3.2M)與計算量(8.7B)最高,但精度優勢不明顯。
綜合推薦:
-
追求高精度:優先選YOLO12n(精度與效率兼顧);
-
需高速低耗:選YOLO11n(速度最快且精度接近YOLO12n);
-
YOLOv5nu/YOLOv8n因性能劣勢,無特殊需求時不建議首選。
5.2 數據集分析

數據集中訓練集和驗證集一共17000張圖片,數據集目標類別兩種:正常腎臟,腎結石,數據集配置代碼如下:

上面的圖片就是部分樣本集訓練中經過數據增強後的效果標註。
5.3 訓練結果

混淆矩陣顯示中識別精準度顯示是一條對角線,方塊顏色越深代表對應的類別識別的精準度越高。

F1指數(F1 Score)是統計學和機器學習中用於評估分類模型性能的核心指標,綜合了模型的精確率(Precision)和召回率(Recall),通過調和平均數平衡兩者的表現。
當置信度為0.407時,所有類別的綜合F1值達到了0.88(藍色曲線)。

mAP@0.5:是目標檢測任務中常用的評估指標,表示在交併比(IoU)閾值為0.5時計算的平均精度均值(mAP)。其核心含義是:只有當預測框與真實框的重疊面積(IoU)≥50%時,才認為檢測結果正確。
圖中可以看到綜合mAP@0.5達到了0.938(93.8%),準確率非常高。
6. 源碼獲取方式
源碼獲取方式:https://www.bilibili.com/video/BV1Jzm4BtErh