視頻演示
基於深度學習的螺栓螺母檢測系統
1. 前言
大家好,歡迎來到 Coding 茶水間。
在工業質檢、設備維護等場景中,螺栓、螺母這類小零件的檢測往往費時費力,還容易因漏檢留下安全隱患。今天我們帶來的項目,就是基於 YOLO 算法 的螺栓螺母檢測系統,它能精準識別圖片與視頻中的螺栓螺母,還能細分到螺絲的杆部與頭部,把原本靠肉眼完成的細碎檢查,變成高效、可復現的智能流程。
這套系統的主界面分成左、中、右三大區域:左側是功能入口,支持單圖、視頻、批量圖片、攝像頭實時檢測以及模型切換;中間是檢測區,可調節置信度與交併比,實時顯示檢測耗時與目標數量,並在下方用表格列出每個目標的詳細信息;右側負責統計與過濾,既能按類別彙總數量,又能聚焦某一類目標查看置信度與座標。
除了可視化操作,我們還做了登錄與個人中心,支持頭像、密碼等信息的管理;同時提供腳本化檢測方式,無需界面就能批量跑圖片、視頻或攝像頭;更有訓練腳本,可按需配置模型數量、批次大小與訓練輪次,用自己的數據訓練出更貼合業務的檢測模型。訓練完成後,結果會保存在指定目錄,包含最佳權重、評估曲線與混淆矩陣,方便回溯與分析。
接下來,我們會從界面佈局講到功能演示,再到腳本檢測與模型訓練,完整呈現這套“能看、能用、能改”的螺栓螺母檢測系統,希望它能讓你對 YOLO 在工業細節檢測上的落地,有更直觀的認識與啓發。
2. 項目演示
2.1 用户登錄界面
登錄界面佈局簡潔清晰,左側展示系統主題,用户需輸入用户名、密碼及驗證碼完成身份驗證後登錄系統。

2.2 新用户註冊
註冊時可自定義用户名與密碼,支持上傳個人頭像;如未上傳,系統將自動使用默認頭像完成賬號創建。

2.3 主界面佈局
主界面採用三欄結構,左側為功能操作區,中間用於展示檢測畫面,右側呈現目標詳細信息,佈局合理,交互流暢。

2.4 個人信息管理
用户可在此模塊中修改密碼或更換頭像,個人信息支持隨時更新與保存。

2.5 多模態檢測展示
系統支持圖片、視頻及攝像頭實時畫面的目標檢測。識別結果將在畫面中標註顯示,並在下方列表中逐項列出。點擊具體目標可查看其類別、置信度及位置座標等詳細信息。

2.6 多模型切換
系統內置多種已訓練模型,用户可根據實際需求靈活切換,以適應不同檢測場景或對比識別效果。

3.模型訓練核心代碼
本腳本是YOLO模型批量訓練工具,可自動修正數據集路徑為絕對路徑,從pretrained文件夾加載預訓練模型,按設定參數(100輪/640尺寸/批次8)一鍵批量訓練YOLOv5nu/v8n/v11n/v12n模型。
4. 技術棧
-
語言:Python 3.10
-
前端界面:PyQt5
-
數據庫:SQLite(存儲用户信息)
-
模型:YOLOv5、YOLOv8、YOLOv11、YOLOv12
5. YOLO模型對比與識別效果解析
5.1 YOLOv5/YOLOv8/YOLOv11/YOLOv12模型對比
基於Ultralytics官方COCO數據集訓練結果:
|
模型 |
尺寸(像素) |
mAPval 50-95 |
速度(CPU ONNX/毫秒) |
參數(M) |
FLOPs(B) |
|---|---|---|---|---|---|
|
YOLO12n |
640 |
40.6 |
- |
2.6 |
6.5 |
|
YOLO11n |
640 |
39.5 |
56.1 ± 0.8 |
2.6 |
6.5 |
|
YOLOv8n |
640 |
37.3 |
80.4 |
3.2 |
8.7 |
|
YOLOv5nu |
640 |
34.3 |
73.6 |
2.6 |
7.7 |
關鍵結論:
-
精度最高:YOLO12n(mAP 40.6%),顯著領先其他模型(較YOLOv5nu高約6.3個百分點);
-
速度最優:YOLO11n(CPU推理56.1ms),比YOLOv8n快42%,適合實時輕量部署;
-
效率均衡:YOLO12n/YOLO11n/YOLOv8n/YOLOv5nu參數量均為2.6M,FLOPs較低(YOLO12n/11n僅6.5B);YOLOv8n參數量(3.2M)與計算量(8.7B)最高,但精度優勢不明顯。
綜合推薦:
-
追求高精度:優先選YOLO12n(精度與效率兼顧);
-
需高速低耗:選YOLO11n(速度最快且精度接近YOLO12n);
-
YOLOv5nu/YOLOv8n因性能劣勢,無特殊需求時不建議首選。
5.2 數據集分析

數據集中訓練集和驗證集一共8800張圖片,數據集目標類別兩種:正常腎臟,腎結石,數據集配置代碼如下:


上面的圖片就是部分樣本集訓練中經過數據增強後的效果標註。
5.3 訓練結果

混淆矩陣顯示中識別精準度顯示是一條對角線,方塊顏色越深代表對應的類別識別的精準度越高。

F1指數(F1 Score)是統計學和機器學習中用於評估分類模型性能的核心指標,綜合了模型的精確率(Precision)和召回率(Recall),通過調和平均數平衡兩者的表現。
當置信度為0.621時,所有類別的綜合F1值達到了0.96(藍色曲線)。

mAP@0.5:是目標檢測任務中常用的評估指標,表示在交併比(IoU)閾值為0.5時計算的平均精度均值(mAP)。其核心含義是:只有當預測框與真實框的重疊面積(IoU)≥50%時,才認為檢測結果正確。
圖中可以看到綜合mAP@0.5達到了0.973(97.3%),準確率非常高。
6. 源碼獲取方式
源碼獲取方式:https://www.bilibili.com/video/BV1eqSyBzEyw